Patient-centered brain transcriptomic and multimodal imaging determinants of clinical progression, physical activity, and treatment needs in Parkinson’s disease
Quadri Adewale, Ahmed Faraz Khan, Sue-Jin Lin, Tobias R. Baumeister, Yashar Zeighami, Felix Carbonell, Daniel Ferreira, Yasser Iturria-Medina
{"title":"Patient-centered brain transcriptomic and multimodal imaging determinants of clinical progression, physical activity, and treatment needs in Parkinson’s disease","authors":"Quadri Adewale, Ahmed Faraz Khan, Sue-Jin Lin, Tobias R. Baumeister, Yashar Zeighami, Felix Carbonell, Daniel Ferreira, Yasser Iturria-Medina","doi":"10.1038/s41531-025-00878-4","DOIUrl":null,"url":null,"abstract":"<p>We continue to lack a clear understanding on how the biological and clinical complexity of Parkinson’s disease emerges from molecular to macroscopic brain interactions. Here, we use personalized multiscale spatiotemporal computational brain models to characterize for the first time the synergistic links between genes, several multimodal neuroimaging-derived biological factors, clinical profiles, and therapeutic needs in PD. We identified genes modulating PD-caused brain reorganization in dopamine transporter level, neuronal activity integrity, microstructure, dendrite density and tissue atrophy. Inter-individual heterogeneity in the identified gene-mediated biological mechanisms was associated with five distinct configurations of PD motor and non-motor symptoms. Notably, the protein-protein interaction networks underlying both brain phenotypic and symptom configurations in PD revealed distinct hub genes including <i>MYC, CCNA2, CCDK1, SRC, STAT3</i> and <i>PSMD4</i>. We also studied the biological mechanisms associated with physical activities performance, observing that leisure and work activities are strongly related to neurotypical cholesterol homeostasis and inflammatory response processes, respectively. Finally, patient-tailored in silico gene perturbations revealed a set of putative disease-modifying drugs with potential to effectively treat PD across different biological levels, most of which are associated with dopamine reuptake and anti-inflammation. Our study constitutes the first self-contained multiscale spatiotemporal computational approach providing comprehensive insights into the complex multifactorial pathogenesis of PD, unraveling key biological modulators of physical and clinical deterioration, and serving as a blueprint for optimum drug selection at personalized level.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"85 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00878-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We continue to lack a clear understanding on how the biological and clinical complexity of Parkinson’s disease emerges from molecular to macroscopic brain interactions. Here, we use personalized multiscale spatiotemporal computational brain models to characterize for the first time the synergistic links between genes, several multimodal neuroimaging-derived biological factors, clinical profiles, and therapeutic needs in PD. We identified genes modulating PD-caused brain reorganization in dopamine transporter level, neuronal activity integrity, microstructure, dendrite density and tissue atrophy. Inter-individual heterogeneity in the identified gene-mediated biological mechanisms was associated with five distinct configurations of PD motor and non-motor symptoms. Notably, the protein-protein interaction networks underlying both brain phenotypic and symptom configurations in PD revealed distinct hub genes including MYC, CCNA2, CCDK1, SRC, STAT3 and PSMD4. We also studied the biological mechanisms associated with physical activities performance, observing that leisure and work activities are strongly related to neurotypical cholesterol homeostasis and inflammatory response processes, respectively. Finally, patient-tailored in silico gene perturbations revealed a set of putative disease-modifying drugs with potential to effectively treat PD across different biological levels, most of which are associated with dopamine reuptake and anti-inflammation. Our study constitutes the first self-contained multiscale spatiotemporal computational approach providing comprehensive insights into the complex multifactorial pathogenesis of PD, unraveling key biological modulators of physical and clinical deterioration, and serving as a blueprint for optimum drug selection at personalized level.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.