Junlei Xue, Fuquan Tang, Qian Yang, Tao Yuan, Jiakun Gao, Chao Zhu, Yu Su, Ting Ma
{"title":"Surface Movement Law Caused by Continuous Mining: A Case Study of Loess Plateau Coal Mines","authors":"Junlei Xue, Fuquan Tang, Qian Yang, Tao Yuan, Jiakun Gao, Chao Zhu, Yu Su, Ting Ma","doi":"10.1007/s11053-025-10479-w","DOIUrl":null,"url":null,"abstract":"<p>The surface movement law induced by continuous mining across multiple working faces is distinct compared to that of a single working face. It is essential to understand and analyze this law to ensure the safety of coal mining operations. This study employed a research method that integrates numerical simulation and theoretical analysis to define, for the first time, the concepts of the repeated mining subsidence ratio and seemingly full mining. The analysis of ground surface movement in multiple mine working faces revealed that: The ground surface in multiple mine working faces within the Loess Plateau coal mines experienced multiple movements, with the center of subsidence deviating from the center of the working face. In the direction of surface inclination, the subsidence followed a cyclic pattern as it approached full mining, with the center of subsidence shifting away from the center of the mining area and positioning itself atop the spacer coal pillar. Multiple mine working faces intensify surface deformation and prolong surface movement. Spacer coal pillars between adjacent mine working faces provide structural support to surface subsidence deformation. Surface movement deformation results from the combined effects of slope slippage and mining-induced subsidence. The findings of this study establish a foundation for further research on surface movement and deformation in multiple mine working faces in the Loess Plateau coal mines.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"183 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10479-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The surface movement law induced by continuous mining across multiple working faces is distinct compared to that of a single working face. It is essential to understand and analyze this law to ensure the safety of coal mining operations. This study employed a research method that integrates numerical simulation and theoretical analysis to define, for the first time, the concepts of the repeated mining subsidence ratio and seemingly full mining. The analysis of ground surface movement in multiple mine working faces revealed that: The ground surface in multiple mine working faces within the Loess Plateau coal mines experienced multiple movements, with the center of subsidence deviating from the center of the working face. In the direction of surface inclination, the subsidence followed a cyclic pattern as it approached full mining, with the center of subsidence shifting away from the center of the mining area and positioning itself atop the spacer coal pillar. Multiple mine working faces intensify surface deformation and prolong surface movement. Spacer coal pillars between adjacent mine working faces provide structural support to surface subsidence deformation. Surface movement deformation results from the combined effects of slope slippage and mining-induced subsidence. The findings of this study establish a foundation for further research on surface movement and deformation in multiple mine working faces in the Loess Plateau coal mines.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.