Roxane Ferry, Marion Y. Thomas, Harsha S. Bhat, Pierpaolo Dubernet
{"title":"Depth Dependence of Coseismic Off-Fault Damage and Its Effects on Rupture Dynamics","authors":"Roxane Ferry, Marion Y. Thomas, Harsha S. Bhat, Pierpaolo Dubernet","doi":"10.1029/2024JB029787","DOIUrl":null,"url":null,"abstract":"<p>Faults are complex systems embedded in an evolving medium fractured by seismic ruptures. This off-fault damage zone is shown to be thermo-hydro-mechano-chemically coupled to the main fault plane by a growing number of studies. Yet, off-fault medium is still, for the most part, modeled as a purely elastic—hence passive—medium. Using a micromechanical model that accounts for dynamic changes of elastic moduli and inelastic strains related to crack growth, we investigate the depth variation of dynamically triggered off-fault damage and its counter-impact on earthquake slip dynamics. We show that the damage zone, while narrowing with depth, also becomes denser and contrary to prevailing assumptions continues to act as an energy sink, significantly influencing rupture dynamics by stabilizing slip rates. Furthermore, we observe that damage formation markedly reduces rupture velocity and delays, or even prevents, the transition to supershear speeds even for a narrow damage zone. This underscores the critical need to incorporate the complex interplay between the main fault plane and its surrounding medium across the entire seismogenic zone. As a proof of concept, we introduce a 1D spring-slider model that captures bulk elastic variations, by modulating spring stiffness, and normal stress variations that emulate changes in bulk load. This simple model demonstrates the occurrence of slow slip events alongside conventional earthquakes, driven by the dynamic interaction between bulk temporal evolution and fault slip dynamics, without necessitating any changes to frictional properties.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029787","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Faults are complex systems embedded in an evolving medium fractured by seismic ruptures. This off-fault damage zone is shown to be thermo-hydro-mechano-chemically coupled to the main fault plane by a growing number of studies. Yet, off-fault medium is still, for the most part, modeled as a purely elastic—hence passive—medium. Using a micromechanical model that accounts for dynamic changes of elastic moduli and inelastic strains related to crack growth, we investigate the depth variation of dynamically triggered off-fault damage and its counter-impact on earthquake slip dynamics. We show that the damage zone, while narrowing with depth, also becomes denser and contrary to prevailing assumptions continues to act as an energy sink, significantly influencing rupture dynamics by stabilizing slip rates. Furthermore, we observe that damage formation markedly reduces rupture velocity and delays, or even prevents, the transition to supershear speeds even for a narrow damage zone. This underscores the critical need to incorporate the complex interplay between the main fault plane and its surrounding medium across the entire seismogenic zone. As a proof of concept, we introduce a 1D spring-slider model that captures bulk elastic variations, by modulating spring stiffness, and normal stress variations that emulate changes in bulk load. This simple model demonstrates the occurrence of slow slip events alongside conventional earthquakes, driven by the dynamic interaction between bulk temporal evolution and fault slip dynamics, without necessitating any changes to frictional properties.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.