{"title":"Characterizing Marine Magnetic Anomalies: A Machine Learning Approach to Advancing the Understanding of Oceanic Crust Formation","authors":"S. Wu, S. Thoram, J. Sun, W. W. Sager, J. Chen","doi":"10.1029/2024JB030682","DOIUrl":null,"url":null,"abstract":"<p>Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)-based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi-automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user-specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid-Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data-driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030682","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Linear magnetic anomalies (LMA), resulting from Earth's magnetic field reversals recorded by seafloor spreading serve as crucial evidence for oceanic crust formation and plate tectonics. Traditionally, LMA analysis relies on visual inspection and manual interpretation, which can be subject to biases due to the complexities of the tectonic history, uneven data coverage, and strong local anomalies associated with seamounts and fracture zones. In this study, we present a Machine learning (ML)-based framework to identify LMA, determine their orientations and distinguish spatial patterns across oceans. The framework consists of three stages and is semi-automated, scalable and unbiased. First, a generation network produces artificial yet realistic magnetic anomalies based on user-specified conditions of linearity and orientation, addressing the scarcity of the labeled training dataset for supervised ML approaches. Second, a characterization network is trained on these generated magnetic anomalies to identify LMA and their orientations. Third, the detected LMA features are clustered into groups based on predicted orientations, revealing underlying spatial patterns, which are directly related to propagating ridges and tectonic activity. The application of this framework to magnetic data from seven areas in the Atlantic and Pacific oceans aligns well with established magnetic lineations and geological features, such as the Mid-Atlantic Ridge, Reykjanes Ridge, Galapagos Spreading Center, Shatsky Rise, Juan de Fuca Ridge and even Easter Microplate and Galapagos hotspot. The proposed framework establishes a solid foundation for future data-driven marine magnetic analyses and facilitates objective and quantitative geological interpretation, thus offering the potential to enhance our understanding of oceanic crust formation.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.