Liyi Zhang , Guangyong Zeng , Jianquan Luo , Yinhua Wan , Benkun Qi
{"title":"Exploring the varied effects of lignin modification during deep eutectic solvents pretreatment on enzymatic cellulose hydrolysis","authors":"Liyi Zhang , Guangyong Zeng , Jianquan Luo , Yinhua Wan , Benkun Qi","doi":"10.1016/j.biombioe.2025.107707","DOIUrl":null,"url":null,"abstract":"<div><div>While the mechanism for extracting lignin from biomass using deep eutectic solvent (DES) pretreatment has been widely investigated, few studies have specifically identified the grafting of hydrogen bond donors from DES onto the lignin surface during pretreatment and examined the effect of lignin modification on enzymatic cellulose hydrolysis. This study combines choline chloride (CC) with lactic acid (LA), oxalic acid (OA) and glycerol (Gly) to treat lignin. Structural characterization confirmed the incorporation of LA and OA via esterification, and Gly via etherification, onto lignin surface. Enzymatic hydrolysis results indicated that CC-OA-treated lignin strongly inhibited hydrolysis, with glucose yields ranging from ∼30 % to ∼46 %. In contrast, CC-LA- and CC-Gly-treated lignin exhibited weaker inhibition, with glucose yields varying from ∼50 % to ∼59 % for the former and ∼47 %–∼60 % for the latter, compared to untreated lignin with glucose yields of 51.25 % and 38.95% at two loadings. Notably, a CC-Gly-treated lignin, with lower loading, resulted in glucose yields ranging from 57.02 % to 60.22 %, showing no inhibition on cellulose hydrolysis compared to the control without lignin addition (57.87 %). Physicochemical analyses revealed variations in water contact angle, surface charge, and total phenolic hydroxyl content among DES-treated lignin samples, affecting cellulase-lignin interactions—specifically hydrophobic, electrostatic, and hydrogen bonding. This study clarifies the relationship between DES composition, lignin modification, and enzymatic cellulose hydrolysis efficiency, providing valuable insights into the effects of DES-induced lignin modifications on cellulose saccharification and addressing a significant gap in the literature.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"195 ","pages":"Article 107707"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953425001187","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
While the mechanism for extracting lignin from biomass using deep eutectic solvent (DES) pretreatment has been widely investigated, few studies have specifically identified the grafting of hydrogen bond donors from DES onto the lignin surface during pretreatment and examined the effect of lignin modification on enzymatic cellulose hydrolysis. This study combines choline chloride (CC) with lactic acid (LA), oxalic acid (OA) and glycerol (Gly) to treat lignin. Structural characterization confirmed the incorporation of LA and OA via esterification, and Gly via etherification, onto lignin surface. Enzymatic hydrolysis results indicated that CC-OA-treated lignin strongly inhibited hydrolysis, with glucose yields ranging from ∼30 % to ∼46 %. In contrast, CC-LA- and CC-Gly-treated lignin exhibited weaker inhibition, with glucose yields varying from ∼50 % to ∼59 % for the former and ∼47 %–∼60 % for the latter, compared to untreated lignin with glucose yields of 51.25 % and 38.95% at two loadings. Notably, a CC-Gly-treated lignin, with lower loading, resulted in glucose yields ranging from 57.02 % to 60.22 %, showing no inhibition on cellulose hydrolysis compared to the control without lignin addition (57.87 %). Physicochemical analyses revealed variations in water contact angle, surface charge, and total phenolic hydroxyl content among DES-treated lignin samples, affecting cellulase-lignin interactions—specifically hydrophobic, electrostatic, and hydrogen bonding. This study clarifies the relationship between DES composition, lignin modification, and enzymatic cellulose hydrolysis efficiency, providing valuable insights into the effects of DES-induced lignin modifications on cellulose saccharification and addressing a significant gap in the literature.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.