Enhanced chloroquine adsorption using cobalt-modified mesoporous silicas for water treatment

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-02-17 DOI:10.1016/j.cep.2025.110224
Renata Mariane de Souza , Grace Anne Vieira Magalhães-Ghiotto , Rosângela Bergamasco
{"title":"Enhanced chloroquine adsorption using cobalt-modified mesoporous silicas for water treatment","authors":"Renata Mariane de Souza ,&nbsp;Grace Anne Vieira Magalhães-Ghiotto ,&nbsp;Rosângela Bergamasco","doi":"10.1016/j.cep.2025.110224","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use of chloroquine (CQ) during the COVID-19 pandemic has led to its accumulation in water bodies due to the inefficiency of wastewater treatment plants (WWTPs). This study synthesized, characterized, and evaluated mesoporous silicas MCM-41 and MCM-48 modified with cobalt oxide nanoparticles for CQ removal. Characterization was conducted to assess the adsorbent properties and their correlation with the adsorption process. The materials exhibited high surface areas (S<sub>BET</sub> &gt; 369.49 m<sup>2</sup> g<sup>−1</sup>) and uniform mesoporous structures, confirming their suitability for adsorption and desirable properties for recalcitrant contaminant removal. Adsorption kinetics followed the Elovich model, with equilibrium capacities of 25.3 mg g<sup>−1</sup> (MCM-41-CoO) and 24.04 mg g<sup>−1</sup> (MCM-48-CoO), and intraparticle diffusion governed by a multi-step process. Isotherms were best described by the Sips model, with maximum adsorption capacities of 24.78 mg g<sup>−1</sup> (MCM-41-CoO) and 24.00 mg g<sup>−1</sup> (MCM-48-CoO) at temperatures ranging from 15 to 45 °C. Thermodynamic parameters indicated a spontaneous, endothermic process with low randomness, suggesting chemical interaction in a monolayer followed by electrostatic interactions. These findings highlight the efficiency of modified mesoporous silicas as adsorbents for CQ, a critical pharmaceutical contaminant, and contribute to developing sustainable water treatment technologies essential for environmental protection and public health.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110224"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025527012500073X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of chloroquine (CQ) during the COVID-19 pandemic has led to its accumulation in water bodies due to the inefficiency of wastewater treatment plants (WWTPs). This study synthesized, characterized, and evaluated mesoporous silicas MCM-41 and MCM-48 modified with cobalt oxide nanoparticles for CQ removal. Characterization was conducted to assess the adsorbent properties and their correlation with the adsorption process. The materials exhibited high surface areas (SBET > 369.49 m2 g−1) and uniform mesoporous structures, confirming their suitability for adsorption and desirable properties for recalcitrant contaminant removal. Adsorption kinetics followed the Elovich model, with equilibrium capacities of 25.3 mg g−1 (MCM-41-CoO) and 24.04 mg g−1 (MCM-48-CoO), and intraparticle diffusion governed by a multi-step process. Isotherms were best described by the Sips model, with maximum adsorption capacities of 24.78 mg g−1 (MCM-41-CoO) and 24.00 mg g−1 (MCM-48-CoO) at temperatures ranging from 15 to 45 °C. Thermodynamic parameters indicated a spontaneous, endothermic process with low randomness, suggesting chemical interaction in a monolayer followed by electrostatic interactions. These findings highlight the efficiency of modified mesoporous silicas as adsorbents for CQ, a critical pharmaceutical contaminant, and contribute to developing sustainable water treatment technologies essential for environmental protection and public health.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Intensification and enhancement of phenolic compounds extraction using cooperative formulation Editorial Board Enhanced chloroquine adsorption using cobalt-modified mesoporous silicas for water treatment Development of 3D-printed electrodes using polyacrylonitrile/ graphene composites for application in polysulfide bromide flow battery Experimental and simulation study of a catalytic-membrane integrated system for efficient CO2 stripping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1