Melanie Coronel-Muñoz , Ana Gabriela Romero-García , Brenda Huerta-Rosas , Eduardo Sánchez-Ramírez , Juan José Quiroz-Ramírez , Juan Gabriel Segovia-Hernández
{"title":"Assessment of the sustainability of intensified CO2 capture schemes","authors":"Melanie Coronel-Muñoz , Ana Gabriela Romero-García , Brenda Huerta-Rosas , Eduardo Sánchez-Ramírez , Juan José Quiroz-Ramírez , Juan Gabriel Segovia-Hernández","doi":"10.1016/j.cep.2025.110222","DOIUrl":null,"url":null,"abstract":"<div><div>The SDGs do address climate-related goals that are interconnected with the need to reduce greenhouse gas emissions. CO<sub>2</sub> capture involves the use of solvents such as Monoethanolamine (MEA), whose use, advantages, and disadvantages are well reported. Currently, there are alternative solvents that are theoretically more sustainable such as deep eutectic solvents (DES), however, a direct comparative with sustainable indicators is not always available. In this work, two schemes for the CO<sub>2</sub> capture process are evaluated and compared in a sustainable framework. Both schemes capture CO<sub>2</sub> from a combustion process to generate electricity. The first scheme considers Monoethanolamine (MEA) and the second scheme considers a DES (ChCl/ urea (1:2), considering in both schemes the use of natural gas, biogas, and coal as fuels that originate the CO<sub>2</sub> flux. The evaluation of both alternatives must be approached in a weighted manner and within a framework of sustainability. The results indicate that there is no single solution as the optimal solvent for CO<sub>2</sub> capture. It was observed that the choice of solvent is predominantly influenced by the type of fuel used in the combustion zone for electricity generation.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110222"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000716","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The SDGs do address climate-related goals that are interconnected with the need to reduce greenhouse gas emissions. CO2 capture involves the use of solvents such as Monoethanolamine (MEA), whose use, advantages, and disadvantages are well reported. Currently, there are alternative solvents that are theoretically more sustainable such as deep eutectic solvents (DES), however, a direct comparative with sustainable indicators is not always available. In this work, two schemes for the CO2 capture process are evaluated and compared in a sustainable framework. Both schemes capture CO2 from a combustion process to generate electricity. The first scheme considers Monoethanolamine (MEA) and the second scheme considers a DES (ChCl/ urea (1:2), considering in both schemes the use of natural gas, biogas, and coal as fuels that originate the CO2 flux. The evaluation of both alternatives must be approached in a weighted manner and within a framework of sustainability. The results indicate that there is no single solution as the optimal solvent for CO2 capture. It was observed that the choice of solvent is predominantly influenced by the type of fuel used in the combustion zone for electricity generation.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.