{"title":"Predicting policy funding allocation with Machine Learning","authors":"Nicola Caravaggio , Giuliano Resce , Cristina Vaquero-Piñeiro","doi":"10.1016/j.seps.2025.102175","DOIUrl":null,"url":null,"abstract":"<div><div>Allocating funds through competitive opportunities is a core tool of place-based development policies, as it can generate economic benefits and support the revitalisation of ‘left-behind’ territories. By relying on Machine Learning (ML) techniques, this paper investigates the predictability of actors expected to benefit from EU development funding over the 2014–2020 period in Italy. We implemented eight different ML classification algorithms and Random Forest, followed by Extreme Gradient Boosting, and Support Vector Machine emerged as the most predictive. The results show that it is possible to make out-of-sample predictions and diagnose the precise factors influencing fund allocation, such as territorial attributes, economic dimensions, and production specialisation. Knowing in advance potential winners of the calls can help design tailored territorial, and even sectorial, public policies to address the obstacles to local development and green transition, and to efficiently distribute resources within the policy framework. This evidence contributes to the reflection launched by the Commission on the future of the competitiveness of the EU.</div></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"98 ","pages":"Article 102175"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012125000242","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Allocating funds through competitive opportunities is a core tool of place-based development policies, as it can generate economic benefits and support the revitalisation of ‘left-behind’ territories. By relying on Machine Learning (ML) techniques, this paper investigates the predictability of actors expected to benefit from EU development funding over the 2014–2020 period in Italy. We implemented eight different ML classification algorithms and Random Forest, followed by Extreme Gradient Boosting, and Support Vector Machine emerged as the most predictive. The results show that it is possible to make out-of-sample predictions and diagnose the precise factors influencing fund allocation, such as territorial attributes, economic dimensions, and production specialisation. Knowing in advance potential winners of the calls can help design tailored territorial, and even sectorial, public policies to address the obstacles to local development and green transition, and to efficiently distribute resources within the policy framework. This evidence contributes to the reflection launched by the Commission on the future of the competitiveness of the EU.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.