Gianluca Di Egidio , Carla Martini , Ehsan Ghassemali , Alessandro Morri
{"title":"Electroless Ni-P + diamond-like carbon multilayer: Influence on tribological behaviour of AlSi10Mg produced by powder bed fusion - Laser beam","authors":"Gianluca Di Egidio , Carla Martini , Ehsan Ghassemali , Alessandro Morri","doi":"10.1016/j.wear.2025.205803","DOIUrl":null,"url":null,"abstract":"<div><div>Powder Bed Fusion – Laser Beam (PBF-LB) technology has recently become popular for producing aluminium alloy complex-shaped components. However, the poor surface quality and relatively low hardness limit industrial applications where adequate tribological behaviour is critical. In this context, dry-sliding tests (ball-on-disk vs. Al<sub>2</sub>O<sub>3</sub>) were carried out on PBF-LB AlSi10Mg coated with a Ni-9%P + Diamond-Like Carbon (DLC) multilayer (belonging to the sub-type “hydrogenated amorphous carbon” i.e., <em>a</em>-C:H, with a Cr-W based bond layer), to investigate the influence on tribological behaviour of as-built and heat-treated substrates. Rapid solution treatment (10 min at 510 °C) after Ni-P deposition promoted an important decrease (-49 %) in wear depth compared to non heat-treated Ni-P coating without significantly affecting the coefficient of friction. The multilayer Ni-P + DLC coating further improved the tribological behaviour of the system, reducing about 5 times the coefficient of friction and the wear depth by 2 orders of magnitude compared to uncoated and Ni-P coated conditions. However, applying rapid solution in air after Ni-P deposition may cause interlayer oxidation and then DLC adhesive failure. In conclusion, the multilayer system significantly improved the tribological behaviour of the PBF-LB AlSi10Mg, providing an adequate load-bearing of the DLC topcoat regardless of the substrate microstructure, thus extending its use in sliding applications.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"566 ","pages":"Article 205803"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164825000729","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Powder Bed Fusion – Laser Beam (PBF-LB) technology has recently become popular for producing aluminium alloy complex-shaped components. However, the poor surface quality and relatively low hardness limit industrial applications where adequate tribological behaviour is critical. In this context, dry-sliding tests (ball-on-disk vs. Al2O3) were carried out on PBF-LB AlSi10Mg coated with a Ni-9%P + Diamond-Like Carbon (DLC) multilayer (belonging to the sub-type “hydrogenated amorphous carbon” i.e., a-C:H, with a Cr-W based bond layer), to investigate the influence on tribological behaviour of as-built and heat-treated substrates. Rapid solution treatment (10 min at 510 °C) after Ni-P deposition promoted an important decrease (-49 %) in wear depth compared to non heat-treated Ni-P coating without significantly affecting the coefficient of friction. The multilayer Ni-P + DLC coating further improved the tribological behaviour of the system, reducing about 5 times the coefficient of friction and the wear depth by 2 orders of magnitude compared to uncoated and Ni-P coated conditions. However, applying rapid solution in air after Ni-P deposition may cause interlayer oxidation and then DLC adhesive failure. In conclusion, the multilayer system significantly improved the tribological behaviour of the PBF-LB AlSi10Mg, providing an adequate load-bearing of the DLC topcoat regardless of the substrate microstructure, thus extending its use in sliding applications.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.