{"title":"Mapping of friction, wear and particle emissions from high-speed train brakes","authors":"Yezhe Lyu , Qixiang Zhang , Leonie Tanzeglock , Minghui Tu , Jiliang Mo , Tomoaki Okuda , Joakim Pagels , Jens Wahlström","doi":"10.1016/j.wear.2025.206027","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports contact pressure-sliding speed maps for friction, wear and particle emissions from high-speed train brakes. Two particle spectrometers measured the airborne wear particles generated with a pin-on-disc tribometer. Particles were characterized with transmission electron microscopy and energy dispersive X-ray fluorescence. The results indicate that both the friction and wear of brake pads and discs gradually decreased as sliding speed increased, which showed less dependence on contact pressure. Particle concentrations gradually increased with increasing sliding speed. Low contact pressure and sliding speed tended to generate particles smaller than 2.5 μm. The train brake emitted particles had higher average geometric mean diameters than the car brake emitted particles, which were primarily composed of iron, copper and chromium and were oxidized.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"572 ","pages":"Article 206027"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164825002960","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports contact pressure-sliding speed maps for friction, wear and particle emissions from high-speed train brakes. Two particle spectrometers measured the airborne wear particles generated with a pin-on-disc tribometer. Particles were characterized with transmission electron microscopy and energy dispersive X-ray fluorescence. The results indicate that both the friction and wear of brake pads and discs gradually decreased as sliding speed increased, which showed less dependence on contact pressure. Particle concentrations gradually increased with increasing sliding speed. Low contact pressure and sliding speed tended to generate particles smaller than 2.5 μm. The train brake emitted particles had higher average geometric mean diameters than the car brake emitted particles, which were primarily composed of iron, copper and chromium and were oxidized.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.