Experimental study on catalytic conversion and flow characteristics of ortho-para hydrogen in tubular packed-bed converters at liquid nitrogen temperature

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2025-02-12 DOI:10.1016/j.cryogenics.2025.104041
Kai Wang , Sheng Xu , Jinming Zheng , Shaolong Zhu , Song Fang , Hongmei Xiao , Na Li , Limin Qiu
{"title":"Experimental study on catalytic conversion and flow characteristics of ortho-para hydrogen in tubular packed-bed converters at liquid nitrogen temperature","authors":"Kai Wang ,&nbsp;Sheng Xu ,&nbsp;Jinming Zheng ,&nbsp;Shaolong Zhu ,&nbsp;Song Fang ,&nbsp;Hongmei Xiao ,&nbsp;Na Li ,&nbsp;Limin Qiu","doi":"10.1016/j.cryogenics.2025.104041","DOIUrl":null,"url":null,"abstract":"<div><div>Ortho-para hydrogen conversion is a critical process in hydrogen liquefaction. However, comprehensive data and correlations on the ortho-para hydrogen conversion and pressure drop within catalyst packed beds across the typical range of Reynolds numbers encountered in converters/heat exchangers are still lacking. This study established an experimental setup to measure the catalytic conversion of ortho-para hydrogen and the associated pressure drop in tubular packed-bed converters in the liquid nitrogen temperature range. The effects of the particle size of iron oxide catalysts (20–80 mesh), space velocity (1.5–22 kg/(m<sup>3</sup>·s)), and packed-bed porosity (0.27–0.46) on the catalytic conversion of ortho-para hydrogen, along with the pressure drop characteristics, were examined at around 77 K and 2 MPa. A correlation was further developed for estimating the outlet concentration of para hydrogen with given space velocity, which would be useful for determining the catalyst dosage based on the targeted conversation rate in the product. Furthermore, by modifying the coefficients for viscous and inertial resistance on the basis of the Ergun equation, pressure drop correlations for packed-bed catalytic converters with different particle sizes were proposed, with remarkably improved predictive accuracy. This work offers critical prediction correlations for the design of ortho-para hydrogen catalytic converters/heat exchangers.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"147 ","pages":"Article 104041"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Ortho-para hydrogen conversion is a critical process in hydrogen liquefaction. However, comprehensive data and correlations on the ortho-para hydrogen conversion and pressure drop within catalyst packed beds across the typical range of Reynolds numbers encountered in converters/heat exchangers are still lacking. This study established an experimental setup to measure the catalytic conversion of ortho-para hydrogen and the associated pressure drop in tubular packed-bed converters in the liquid nitrogen temperature range. The effects of the particle size of iron oxide catalysts (20–80 mesh), space velocity (1.5–22 kg/(m3·s)), and packed-bed porosity (0.27–0.46) on the catalytic conversion of ortho-para hydrogen, along with the pressure drop characteristics, were examined at around 77 K and 2 MPa. A correlation was further developed for estimating the outlet concentration of para hydrogen with given space velocity, which would be useful for determining the catalyst dosage based on the targeted conversation rate in the product. Furthermore, by modifying the coefficients for viscous and inertial resistance on the basis of the Ergun equation, pressure drop correlations for packed-bed catalytic converters with different particle sizes were proposed, with remarkably improved predictive accuracy. This work offers critical prediction correlations for the design of ortho-para hydrogen catalytic converters/heat exchangers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Mechanical and electromagnetic properties of CORC cables under combined loads of axial tension and transverse compression Cryogenic helium flow in adiabatic capillary tubes: Numerical insights into choked flow and superfluid behavior in Joule-Thomson cryocoolers High temperature superconducting magnet system with a high pressure chamber at a cryogenic temperatures for neutron scattering investigations Magnetic properties of Ni-Cu-Zn ferrite nanoparticles at cryogenic temperature probed under Mössbauer and VSM studies Experimental study on catalytic conversion and flow characteristics of ortho-para hydrogen in tubular packed-bed converters at liquid nitrogen temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1