Cryogenic helium flow in adiabatic capillary tubes: Numerical insights into choked flow and superfluid behavior in Joule-Thomson cryocoolers

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED Cryogenics Pub Date : 2025-02-18 DOI:10.1016/j.cryogenics.2025.104043
Xin Zhang , Longyu Yang , Yixin Wang , Xueshuo Shang , Wendi Bao , Ziyi Li , Cheng Shao , Zheng Cui
{"title":"Cryogenic helium flow in adiabatic capillary tubes: Numerical insights into choked flow and superfluid behavior in Joule-Thomson cryocoolers","authors":"Xin Zhang ,&nbsp;Longyu Yang ,&nbsp;Yixin Wang ,&nbsp;Xueshuo Shang ,&nbsp;Wendi Bao ,&nbsp;Ziyi Li ,&nbsp;Cheng Shao ,&nbsp;Zheng Cui","doi":"10.1016/j.cryogenics.2025.104043","DOIUrl":null,"url":null,"abstract":"<div><div>The Joule-Thomson (J-T) effect, utilizing helium as the working fluid, is widely employed for refrigeration in the 1–4 K temperature range. The capillary tube, acting as a throttling element, plays a crucial role in providing flow resistance and regulating flow rates. However, critical information regarding helium flow in the capillary tube—such as the onset of choked flow, the existence of superfluid transition, and the dependence of flow rates and the cooling power on the geometric factors of the capillary tube and operating conditions—remains inadequately understood. This paper presents a numerical analysis investigating the flow dynamics and refrigeration characteristics of helium through adiabatic straight capillary tubes. The findings establish criteria for identifying the onset of choked flow and superfluid transition. Results indicate that helium flow within the capillary tube typically operates in the choked flow regime in practical applications. Should a superfluid transition occur, it takes place in the free expansion region outside the capillary tube, exerting minimal influence on the internal flow dynamics. Furthermore, sensitivity analysis identifies the inner diameter as a crucial parameter dictating the mass flow rate. Design guidelines are also provided for the optimal selection of capillary tubes in cryogenic applications.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"147 ","pages":"Article 104043"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227525000219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Joule-Thomson (J-T) effect, utilizing helium as the working fluid, is widely employed for refrigeration in the 1–4 K temperature range. The capillary tube, acting as a throttling element, plays a crucial role in providing flow resistance and regulating flow rates. However, critical information regarding helium flow in the capillary tube—such as the onset of choked flow, the existence of superfluid transition, and the dependence of flow rates and the cooling power on the geometric factors of the capillary tube and operating conditions—remains inadequately understood. This paper presents a numerical analysis investigating the flow dynamics and refrigeration characteristics of helium through adiabatic straight capillary tubes. The findings establish criteria for identifying the onset of choked flow and superfluid transition. Results indicate that helium flow within the capillary tube typically operates in the choked flow regime in practical applications. Should a superfluid transition occur, it takes place in the free expansion region outside the capillary tube, exerting minimal influence on the internal flow dynamics. Furthermore, sensitivity analysis identifies the inner diameter as a crucial parameter dictating the mass flow rate. Design guidelines are also provided for the optimal selection of capillary tubes in cryogenic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
期刊最新文献
Mechanical and electromagnetic properties of CORC cables under combined loads of axial tension and transverse compression Cryogenic helium flow in adiabatic capillary tubes: Numerical insights into choked flow and superfluid behavior in Joule-Thomson cryocoolers High temperature superconducting magnet system with a high pressure chamber at a cryogenic temperatures for neutron scattering investigations Magnetic properties of Ni-Cu-Zn ferrite nanoparticles at cryogenic temperature probed under Mössbauer and VSM studies Experimental study on catalytic conversion and flow characteristics of ortho-para hydrogen in tubular packed-bed converters at liquid nitrogen temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1