Carbon capture with pure monoethanolamine aerosols: Method development for assessing safety hazards and identifying a safe operating window using oxygen-containing flue gas streams

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL Journal of Loss Prevention in The Process Industries Pub Date : 2025-02-10 DOI:10.1016/j.jlp.2025.105587
Annelot Van den Bogaert , Filip Verplaetsen , Maarten Vanierschot , Leen Braeken , M. Enis Leblebici
{"title":"Carbon capture with pure monoethanolamine aerosols: Method development for assessing safety hazards and identifying a safe operating window using oxygen-containing flue gas streams","authors":"Annelot Van den Bogaert ,&nbsp;Filip Verplaetsen ,&nbsp;Maarten Vanierschot ,&nbsp;Leen Braeken ,&nbsp;M. Enis Leblebici","doi":"10.1016/j.jlp.2025.105587","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research proved the potential of aerosol reactors for post-combustion capture of CO<sub>2</sub> with highly concentrated monoethanolamine (MEA). However, aerosol flammability in a continuous aerosol reactor has not been studied before. Safety cannot be guaranteed when processing oxygen-containing flue gases. The goal of this work is to develop a continuous aerosol safety testing method to investigate aerosol flammability. The proposed method is validated by determining the safe operating window of MEA aerosols by changing parameters on the aerosol and gas side. The relation between aerosol properties and flammability is investigated via high-speed camera. Safe operating conditions in air were found for MEA solutions up to of 70 wt%, suggesting that these solutions are safe to use with any flue gas. However, 80 wt% MEA and higher were flammable. 80 wt% MEA was only flammable at low liquid flow rates. This can be attributed to the increased droplet velocity at higher liquid flow rates, which results in shorter evaporation times. Therefore, the lower flammability limit (LFL) cannot be reached. Overall, MEA concentration and liquid flow rate appear to be the most influential parameters on aerosol flammability. Furthermore, the limiting oxygen concentration (LOC) was investigated. Maximum LOCs were identified as 13.5% and 15% for 100 and 90 wt% MEA, respectively. This information is crucial for matching appropriate flue gases with compatible aerosol reactor configurations. By developing and validating the method for MEA aerosols, this work narrows the gap between aerosol reactors for carbon capture and safely processing oxygen-containing flue gas streams.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"94 ","pages":"Article 105587"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025000452","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research proved the potential of aerosol reactors for post-combustion capture of CO2 with highly concentrated monoethanolamine (MEA). However, aerosol flammability in a continuous aerosol reactor has not been studied before. Safety cannot be guaranteed when processing oxygen-containing flue gases. The goal of this work is to develop a continuous aerosol safety testing method to investigate aerosol flammability. The proposed method is validated by determining the safe operating window of MEA aerosols by changing parameters on the aerosol and gas side. The relation between aerosol properties and flammability is investigated via high-speed camera. Safe operating conditions in air were found for MEA solutions up to of 70 wt%, suggesting that these solutions are safe to use with any flue gas. However, 80 wt% MEA and higher were flammable. 80 wt% MEA was only flammable at low liquid flow rates. This can be attributed to the increased droplet velocity at higher liquid flow rates, which results in shorter evaporation times. Therefore, the lower flammability limit (LFL) cannot be reached. Overall, MEA concentration and liquid flow rate appear to be the most influential parameters on aerosol flammability. Furthermore, the limiting oxygen concentration (LOC) was investigated. Maximum LOCs were identified as 13.5% and 15% for 100 and 90 wt% MEA, respectively. This information is crucial for matching appropriate flue gases with compatible aerosol reactor configurations. By developing and validating the method for MEA aerosols, this work narrows the gap between aerosol reactors for carbon capture and safely processing oxygen-containing flue gas streams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
期刊最新文献
Gas safety entropy model research in Chinese urban gas system Delayed ignition of high-pressure hydrogen releases – Experiments and engineering models Carbon capture with pure monoethanolamine aerosols: Method development for assessing safety hazards and identifying a safe operating window using oxygen-containing flue gas streams The analysis of urban gas accidents in China in recent years based on the semi-quantitative FRAM Continuous flow synthesis of pendimethalin in a microreactor for thermal risk reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1