Liu Xiao-Man , Qian Ji-Fa , Gao Yuan , Li Hui , Kong Sheng-Li , Zhang Shao-Jie
{"title":"The analysis of urban gas accidents in China in recent years based on the semi-quantitative FRAM","authors":"Liu Xiao-Man , Qian Ji-Fa , Gao Yuan , Li Hui , Kong Sheng-Li , Zhang Shao-Jie","doi":"10.1016/j.jlp.2025.105584","DOIUrl":null,"url":null,"abstract":"<div><div>With the widespread use of gas, gas safety accidents occur frequently. Especially, the occurrence of serious and extraordinarily serious accidents has seriously threatened the safety of people's lives and property. In order to better understand the causes of urban gas accidents, a statistical analysis of urban residential gas accidents in 2016∼2022 was conducted to analyze the characteristics of gas accidents. The study examined various aspects such as accident overview, month, geographical location, gas type, and accident subject to identify the common characteristics of gas accidents. The semi-quantitative Functional Resonance Analysis Method (FRAM) is introduced to construct a semi-quantitative analysis model of the gas accident process from a systemic perspective. This method illustrates the interaction and coordination among multiple elements. By quantifying the upstream and downstream coupling variability of the system's functional units, it was found that the occurrence of accidents was related to multiple potential factors, with the human factor playing a crucial role. Finally, based on the conclusions of accident law and semi-quantitative functional resonance analysis, targeted countermeasures are proposed from four aspects: man-machine-environment-management. This is to prevent the impact of functional resonance variation from exceeding the tolerance range of the urban gas safety responsibility system, effectively reduce the incidence of urban gas accidents, ensure the safety of life and property of urban residents, and promote social harmony, stability, and sustainable economic development.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"94 ","pages":"Article 105584"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423025000427","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread use of gas, gas safety accidents occur frequently. Especially, the occurrence of serious and extraordinarily serious accidents has seriously threatened the safety of people's lives and property. In order to better understand the causes of urban gas accidents, a statistical analysis of urban residential gas accidents in 2016∼2022 was conducted to analyze the characteristics of gas accidents. The study examined various aspects such as accident overview, month, geographical location, gas type, and accident subject to identify the common characteristics of gas accidents. The semi-quantitative Functional Resonance Analysis Method (FRAM) is introduced to construct a semi-quantitative analysis model of the gas accident process from a systemic perspective. This method illustrates the interaction and coordination among multiple elements. By quantifying the upstream and downstream coupling variability of the system's functional units, it was found that the occurrence of accidents was related to multiple potential factors, with the human factor playing a crucial role. Finally, based on the conclusions of accident law and semi-quantitative functional resonance analysis, targeted countermeasures are proposed from four aspects: man-machine-environment-management. This is to prevent the impact of functional resonance variation from exceeding the tolerance range of the urban gas safety responsibility system, effectively reduce the incidence of urban gas accidents, ensure the safety of life and property of urban residents, and promote social harmony, stability, and sustainable economic development.
期刊介绍:
The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.