Pulsed Laser Ablation of Recycled Copper in Methanol: A new route toward sustainable plasmonic and catalytic nanostructures

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-02-15 DOI:10.1016/j.apsadv.2025.100712
Cristiano Lo Pò , Stefano Boscarino , Silvia Scalese , Simona Boninelli , Maria Grazia Grimaldi , Francesco Ruffino
{"title":"Pulsed Laser Ablation of Recycled Copper in Methanol: A new route toward sustainable plasmonic and catalytic nanostructures","authors":"Cristiano Lo Pò ,&nbsp;Stefano Boscarino ,&nbsp;Silvia Scalese ,&nbsp;Simona Boninelli ,&nbsp;Maria Grazia Grimaldi ,&nbsp;Francesco Ruffino","doi":"10.1016/j.apsadv.2025.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Copper Nanoparticles (NPs) are widely used for their versatility, specifically in plasmonic and catalysis. Now copper has become a critical raw material so an alternative must be found. In this work we compare the plasmonic and catalytic activity of Cu NPs produced by using an industrial ultrapure target and a Cu target obtained from a commercial wire. The technique used for the NPs production is the Pulsed Laser Ablation in Liquid with a <span><math><mrow><mn>1064</mn><mspace></mspace><mi>nm</mi></mrow></math></span> nanosecond laser that allows to produce NPs directly from a bulk target without any treatment.</div><div>Both kinds of NPs exhibit their plasmonic peak at around <span><math><mrow><mn>600</mn><mspace></mspace><mi>nm</mi></mrow></math></span>, typically of Cu. Both kind of NPs exhibit the same catalytic activity, in terms of water splitting, as catalyst, in anode or cathode, with performance comparable with the state of the art.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100712"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Copper Nanoparticles (NPs) are widely used for their versatility, specifically in plasmonic and catalysis. Now copper has become a critical raw material so an alternative must be found. In this work we compare the plasmonic and catalytic activity of Cu NPs produced by using an industrial ultrapure target and a Cu target obtained from a commercial wire. The technique used for the NPs production is the Pulsed Laser Ablation in Liquid with a 1064nm nanosecond laser that allows to produce NPs directly from a bulk target without any treatment.
Both kinds of NPs exhibit their plasmonic peak at around 600nm, typically of Cu. Both kind of NPs exhibit the same catalytic activity, in terms of water splitting, as catalyst, in anode or cathode, with performance comparable with the state of the art.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Graphene-coated Si/C composites for high-density electrodes: Mitigating silicon degradation and enhancing cycle life in lithium-ion batteries Pulsed Laser Ablation of Recycled Copper in Methanol: A new route toward sustainable plasmonic and catalytic nanostructures Selective phase growth of ultra-smooth Ti2O3 and TiO2 thin films at low growth temperature controlled by the oxygen partial pressure Effect of Nb0.5 and Mo0.75 addition on in-vitro corrosion and wear resistance of high-speed laser metal deposited Al0.3CrFeCoNi high-entropy alloy coatings Oxygen effect on the performance of β-Ga2O3 enhancement mode MOSFETs heteroepitaxially grown on a sapphire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1