Cristiano Lo Pò , Stefano Boscarino , Silvia Scalese , Simona Boninelli , Maria Grazia Grimaldi , Francesco Ruffino
{"title":"Pulsed Laser Ablation of Recycled Copper in Methanol: A new route toward sustainable plasmonic and catalytic nanostructures","authors":"Cristiano Lo Pò , Stefano Boscarino , Silvia Scalese , Simona Boninelli , Maria Grazia Grimaldi , Francesco Ruffino","doi":"10.1016/j.apsadv.2025.100712","DOIUrl":null,"url":null,"abstract":"<div><div>Copper Nanoparticles (NPs) are widely used for their versatility, specifically in plasmonic and catalysis. Now copper has become a critical raw material so an alternative must be found. In this work we compare the plasmonic and catalytic activity of Cu NPs produced by using an industrial ultrapure target and a Cu target obtained from a commercial wire. The technique used for the NPs production is the Pulsed Laser Ablation in Liquid with a <span><math><mrow><mn>1064</mn><mspace></mspace><mi>nm</mi></mrow></math></span> nanosecond laser that allows to produce NPs directly from a bulk target without any treatment.</div><div>Both kinds of NPs exhibit their plasmonic peak at around <span><math><mrow><mn>600</mn><mspace></mspace><mi>nm</mi></mrow></math></span>, typically of Cu. Both kind of NPs exhibit the same catalytic activity, in terms of water splitting, as catalyst, in anode or cathode, with performance comparable with the state of the art.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100712"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Copper Nanoparticles (NPs) are widely used for their versatility, specifically in plasmonic and catalysis. Now copper has become a critical raw material so an alternative must be found. In this work we compare the plasmonic and catalytic activity of Cu NPs produced by using an industrial ultrapure target and a Cu target obtained from a commercial wire. The technique used for the NPs production is the Pulsed Laser Ablation in Liquid with a nanosecond laser that allows to produce NPs directly from a bulk target without any treatment.
Both kinds of NPs exhibit their plasmonic peak at around , typically of Cu. Both kind of NPs exhibit the same catalytic activity, in terms of water splitting, as catalyst, in anode or cathode, with performance comparable with the state of the art.