Jun Myoung Sheem , Jin Kyo Koo , Chaeyeon Ha , Young Min Kim , Young Ugk Kim , Jae Hou Nah , Young-Jun Kim
{"title":"Graphene-coated Si/C composites for high-density electrodes: Mitigating silicon degradation and enhancing cycle life in lithium-ion batteries","authors":"Jun Myoung Sheem , Jin Kyo Koo , Chaeyeon Ha , Young Min Kim , Young Ugk Kim , Jae Hou Nah , Young-Jun Kim","doi":"10.1016/j.apsadv.2025.100715","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon, which serves as the anode active material in lithium-ion batteries (LIBs) because of its high capacity, suffers from performance degradation during continuous cycling. In this study, we designed a high-energy density electrode using artificial graphite (AG) with a graphene-coated Si/C active material (Gr@Si/C). The Gr@Si/C composite synthesized via iterative coating processes not only ensures the electronic conductivity of adjacent silicon particles but also provides a buffering capability against volumetric expansion during repeated charge/discharge cycles at high loading and increased electrode density. Remarkably, the prepared Gr@Si/C‒AG blended electrode exhibited enhanced cycle life characteristics compared with those reported in previous studies. X-ray diffraction analysis confirmed the establishment of an electron conduction path and revealed the effect of impeding particle isolation from the conducting network. Furthermore, full cells incorporating the Gr@Si/C‒AG composite electrode harmonized with the cathode exhibited superior capacity retention of more than 70 % over 200 cycles. These findings suggest that graphene-coated Si/C composites are promising anode active materials for LIBs.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100715"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon, which serves as the anode active material in lithium-ion batteries (LIBs) because of its high capacity, suffers from performance degradation during continuous cycling. In this study, we designed a high-energy density electrode using artificial graphite (AG) with a graphene-coated Si/C active material (Gr@Si/C). The Gr@Si/C composite synthesized via iterative coating processes not only ensures the electronic conductivity of adjacent silicon particles but also provides a buffering capability against volumetric expansion during repeated charge/discharge cycles at high loading and increased electrode density. Remarkably, the prepared Gr@Si/C‒AG blended electrode exhibited enhanced cycle life characteristics compared with those reported in previous studies. X-ray diffraction analysis confirmed the establishment of an electron conduction path and revealed the effect of impeding particle isolation from the conducting network. Furthermore, full cells incorporating the Gr@Si/C‒AG composite electrode harmonized with the cathode exhibited superior capacity retention of more than 70 % over 200 cycles. These findings suggest that graphene-coated Si/C composites are promising anode active materials for LIBs.