Graphene-coated Si/C composites for high-density electrodes: Mitigating silicon degradation and enhancing cycle life in lithium-ion batteries

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2025-02-18 DOI:10.1016/j.apsadv.2025.100715
Jun Myoung Sheem , Jin Kyo Koo , Chaeyeon Ha , Young Min Kim , Young Ugk Kim , Jae Hou Nah , Young-Jun Kim
{"title":"Graphene-coated Si/C composites for high-density electrodes: Mitigating silicon degradation and enhancing cycle life in lithium-ion batteries","authors":"Jun Myoung Sheem ,&nbsp;Jin Kyo Koo ,&nbsp;Chaeyeon Ha ,&nbsp;Young Min Kim ,&nbsp;Young Ugk Kim ,&nbsp;Jae Hou Nah ,&nbsp;Young-Jun Kim","doi":"10.1016/j.apsadv.2025.100715","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon, which serves as the anode active material in lithium-ion batteries (LIBs) because of its high capacity, suffers from performance degradation during continuous cycling. In this study, we designed a high-energy density electrode using artificial graphite (AG) with a graphene-coated Si/C active material (Gr@Si/C). The Gr@Si/C composite synthesized via iterative coating processes not only ensures the electronic conductivity of adjacent silicon particles but also provides a buffering capability against volumetric expansion during repeated charge/discharge cycles at high loading and increased electrode density. Remarkably, the prepared Gr@Si/C‒AG blended electrode exhibited enhanced cycle life characteristics compared with those reported in previous studies. X-ray diffraction analysis confirmed the establishment of an electron conduction path and revealed the effect of impeding particle isolation from the conducting network. Furthermore, full cells incorporating the Gr@Si/C‒AG composite electrode harmonized with the cathode exhibited superior capacity retention of more than 70 % over 200 cycles. These findings suggest that graphene-coated Si/C composites are promising anode active materials for LIBs.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100715"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon, which serves as the anode active material in lithium-ion batteries (LIBs) because of its high capacity, suffers from performance degradation during continuous cycling. In this study, we designed a high-energy density electrode using artificial graphite (AG) with a graphene-coated Si/C active material (Gr@Si/C). The Gr@Si/C composite synthesized via iterative coating processes not only ensures the electronic conductivity of adjacent silicon particles but also provides a buffering capability against volumetric expansion during repeated charge/discharge cycles at high loading and increased electrode density. Remarkably, the prepared Gr@Si/C‒AG blended electrode exhibited enhanced cycle life characteristics compared with those reported in previous studies. X-ray diffraction analysis confirmed the establishment of an electron conduction path and revealed the effect of impeding particle isolation from the conducting network. Furthermore, full cells incorporating the Gr@Si/C‒AG composite electrode harmonized with the cathode exhibited superior capacity retention of more than 70 % over 200 cycles. These findings suggest that graphene-coated Si/C composites are promising anode active materials for LIBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Morphology-dependent near-infrared photothermal activity of plasmonic TiN nanobars and nanospheres for anticancer, antibacterial therapy and deep in vivo photoacoustic imaging Rapid and sensitive melamine detection via paper-based surface-enhanced Raman scattering substrate: Plasma-assisted in situ growth of closely packed gold nanoparticles on cellulose paper Graphene-coated Si/C composites for high-density electrodes: Mitigating silicon degradation and enhancing cycle life in lithium-ion batteries Pulsed Laser Ablation of Recycled Copper in Methanol: A new route toward sustainable plasmonic and catalytic nanostructures Selective phase growth of ultra-smooth Ti2O3 and TiO2 thin films at low growth temperature controlled by the oxygen partial pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1