Dissimilar joining of A7075 aluminum and SS400 steel utilizing center-driven double-sided linear friction welding using mild steel as a center material: Processing, mechanical and microstructure characterization

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-02-17 DOI:10.1016/j.jmapro.2025.02.017
Furkan Khan, Takuya Miura, Yoshiaki Morisada, Kohsaku Ushioda, Hidetoshi Fujii
{"title":"Dissimilar joining of A7075 aluminum and SS400 steel utilizing center-driven double-sided linear friction welding using mild steel as a center material: Processing, mechanical and microstructure characterization","authors":"Furkan Khan,&nbsp;Takuya Miura,&nbsp;Yoshiaki Morisada,&nbsp;Kohsaku Ushioda,&nbsp;Hidetoshi Fujii","doi":"10.1016/j.jmapro.2025.02.017","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, conventional direct linear friction welding of SS400 steel and A7075 aluminum was proven challenging because of absence of interfacial plastic deformation towards SS400 during joining, revealing several un-jointed regions throughout the joint interface, which eventually led to a poor joint strength of 77.6 MPa with interfacial fracture. Therefore, center-driven double-sided LFW (CDDS-LFW) is employed to effectively weld SS400 and A7075, with mild steel (MS) used as the center material. Using CDDS-LFW method, a highly efficient weld revealing 100 % joint efficiency concerning MS was obtained successfully by applying different pressures each side. Additionally, the fabricated weld exhibited a base metal fracture in the MS region away from both joint interfaces. The applied pressures were determined based on the cross-point concept after analyzing the thermal dependence behaviors of materials' strengths. A pressure of 50 MPa was applied at MS/SS400 interface, where the materials were simultaneously deformed and joined at high temperature, while 300 MPa was applied at MS/A7075 interface, where both materials were simultaneously deformed and joined at low temperature. This approach enabled the control of welding temperature at both joint interfaces by changing applied pressures on each side. Subsequent mechanical and microstructure investigations were carried out both at center and edge of the fabricated joint. SEM observation confirmed the absence of un-jointed regions and weld defects throughout both the joint interfaces of dissimilar CDDS-LFW weld, ensuring a sound joining. Moreover, microstructure evolution through EBSD analysis revealed the extremely fine-grained microstructure in the joint interface region compared to coarse grain base metal regions.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"139 ","pages":"Pages 67-80"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525001495","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, conventional direct linear friction welding of SS400 steel and A7075 aluminum was proven challenging because of absence of interfacial plastic deformation towards SS400 during joining, revealing several un-jointed regions throughout the joint interface, which eventually led to a poor joint strength of 77.6 MPa with interfacial fracture. Therefore, center-driven double-sided LFW (CDDS-LFW) is employed to effectively weld SS400 and A7075, with mild steel (MS) used as the center material. Using CDDS-LFW method, a highly efficient weld revealing 100 % joint efficiency concerning MS was obtained successfully by applying different pressures each side. Additionally, the fabricated weld exhibited a base metal fracture in the MS region away from both joint interfaces. The applied pressures were determined based on the cross-point concept after analyzing the thermal dependence behaviors of materials' strengths. A pressure of 50 MPa was applied at MS/SS400 interface, where the materials were simultaneously deformed and joined at high temperature, while 300 MPa was applied at MS/A7075 interface, where both materials were simultaneously deformed and joined at low temperature. This approach enabled the control of welding temperature at both joint interfaces by changing applied pressures on each side. Subsequent mechanical and microstructure investigations were carried out both at center and edge of the fabricated joint. SEM observation confirmed the absence of un-jointed regions and weld defects throughout both the joint interfaces of dissimilar CDDS-LFW weld, ensuring a sound joining. Moreover, microstructure evolution through EBSD analysis revealed the extremely fine-grained microstructure in the joint interface region compared to coarse grain base metal regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Experimental investigation of tool wear and surface integrity using a large pulsed electron beam (LPEB) irradiated end-mill cutting tool for Ti-6Al-4 V Additive manufacturing of TiB2 particles enabled high-performance 316L with a unique core-shell melt pool structure Deformation prediction model for milling residual stresses in complex thin-walled parts with variable curvature Tool wear analysis of high-speed sawing of aerospace aluminum alloy based on FEM simulation and cutting experiments Comprehensive analysis of the forming zone and improvement of diameter reduction prediction in the dieless wire drawing process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1