Metabolomic and Proteomic Profiling of Serum-Derived Extracellular Vesicles from Early-Stage Amyotrophic Lateral Sclerosis Patients

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Neuroscience Pub Date : 2025-02-15 DOI:10.1007/s12031-025-02315-w
Yara Al Ojaimi, Nicolas Vallet, Audrey Dangoumau, Débora Lanznaster, Clement Bruno, Antoine Lefevre, Samira Osman, Camille Dupuy, Patrick Emond, Patrick Vourc’h, Philippe Corcia, Zuzana Krupova, Charlotte Veyrat-Durebex, Hélène Blasco
{"title":"Metabolomic and Proteomic Profiling of Serum-Derived Extracellular Vesicles from Early-Stage Amyotrophic Lateral Sclerosis Patients","authors":"Yara Al Ojaimi,&nbsp;Nicolas Vallet,&nbsp;Audrey Dangoumau,&nbsp;Débora Lanznaster,&nbsp;Clement Bruno,&nbsp;Antoine Lefevre,&nbsp;Samira Osman,&nbsp;Camille Dupuy,&nbsp;Patrick Emond,&nbsp;Patrick Vourc’h,&nbsp;Philippe Corcia,&nbsp;Zuzana Krupova,&nbsp;Charlotte Veyrat-Durebex,&nbsp;Hélène Blasco","doi":"10.1007/s12031-025-02315-w","DOIUrl":null,"url":null,"abstract":"<div><p>The identification of reliable biomarkers for amyotrophic lateral sclerosis (ALS) is an unmet medical need for the development of diagnostic and therapeutic strategies. Brain-derived extracellular vesicles (EVs) have been described in peripheral blood serum and used as a direct readout of the status of the central nervous system. Here, we aimed to explore exosome-enriched EVs (referred to simply as EVs) from ALS patients via omics analysis at an early disease stage. Serum EVs were obtained from 9 healthy controls and 9 ALS patients. After EV purification, proteomic (LC‒MS/MS followed by TimsTOF Pro Mass Spectrometry) and metabolomic (Q Exactive mass spectrometer) analyses were performed. No differences in the size or concentration of EVs were observed between the controls and ALS patients. Proteomic analysis revealed 45 proteins differentially expressed in the EVs of ALS patients compared with those of controls. Metabolomic analysis revealed several distinctly represented metabolites involved in the citrate cycle and complex lipid metabolism between patients and controls. Interomics correlation analysis revealed 2 modules that were strongly associated with ALS and included several lipid metabolism-related proteins and metabolites. This study is the first to evaluate EVs by integrated proteomics and metabolomics in early-stage ALS patients, highlighting the technological progress in global inter-omics explorations of small biological samples. The differences observed in the levels of several exosomal proteins and metabolites, including phospholipids, could be used to identify serum biomarkers and novel players involved in ALS pathogenesis.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02315-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of reliable biomarkers for amyotrophic lateral sclerosis (ALS) is an unmet medical need for the development of diagnostic and therapeutic strategies. Brain-derived extracellular vesicles (EVs) have been described in peripheral blood serum and used as a direct readout of the status of the central nervous system. Here, we aimed to explore exosome-enriched EVs (referred to simply as EVs) from ALS patients via omics analysis at an early disease stage. Serum EVs were obtained from 9 healthy controls and 9 ALS patients. After EV purification, proteomic (LC‒MS/MS followed by TimsTOF Pro Mass Spectrometry) and metabolomic (Q Exactive mass spectrometer) analyses were performed. No differences in the size or concentration of EVs were observed between the controls and ALS patients. Proteomic analysis revealed 45 proteins differentially expressed in the EVs of ALS patients compared with those of controls. Metabolomic analysis revealed several distinctly represented metabolites involved in the citrate cycle and complex lipid metabolism between patients and controls. Interomics correlation analysis revealed 2 modules that were strongly associated with ALS and included several lipid metabolism-related proteins and metabolites. This study is the first to evaluate EVs by integrated proteomics and metabolomics in early-stage ALS patients, highlighting the technological progress in global inter-omics explorations of small biological samples. The differences observed in the levels of several exosomal proteins and metabolites, including phospholipids, could be used to identify serum biomarkers and novel players involved in ALS pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
期刊最新文献
Cdh23 Gene Mutation–Induced Vestibular Dysfunction in Mice: Abnormal Stereocilia Bundle and Otolith Development and Activation of p53/FoxO Signaling Pathway Identification of Key Genes and Immune Characteristics of SASP in Acute Ischemic Stroke Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes Metabolomic and Proteomic Profiling of Serum-Derived Extracellular Vesicles from Early-Stage Amyotrophic Lateral Sclerosis Patients Navigating Uncertainty: Assessing Variants of Uncertain Significance in the CDKL5 Gene for Developmental and Epileptic Encephalopathy Using In Silico Prediction Tools and Computational Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1