Molecular characterization of REM genes in Cajanus cajan suggests the role of CcREM1 and CcREM6 like genes in heat stress response.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-15 DOI:10.1186/s12870-025-06059-y
Aimen Shafique, Xing Li, Sajid Fiaz, Kotb A Attia, Roua A Alsubki, Asim Shahzad, Farrukh Azeem, Asmaa M Abushady, Hongxing Xu
{"title":"Molecular characterization of REM genes in Cajanus cajan suggests the role of CcREM1 and CcREM6 like genes in heat stress response.","authors":"Aimen Shafique, Xing Li, Sajid Fiaz, Kotb A Attia, Roua A Alsubki, Asim Shahzad, Farrukh Azeem, Asmaa M Abushady, Hongxing Xu","doi":"10.1186/s12870-025-06059-y","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing temperature is a major threat to plant growth and development. It severely alters various biochemical and physiological processes and ultimately affects the overall crop yield. The membrane-based remorin protein-encoding genes (REM) were previously reported as significantly involved in the regulation of various biotic and abiotic stressors. However, these REM genes were not studied in Cajanus Cajan, the sixth most important legume crop due to its rich protein source and traditional medicinal plant. In this study, 17 REM gene orthologs were identified in C. cajan against A. thaliana REM genes and verified through the presence of conserved REM-related domains. Phylogenetic analysis revealed that REM genes were divided into six different groups. All the REM genes were unevenly distributed on 11 chromosomes of C. cajan. 3D protein structures and intron-exon organization indicate conserved evolutionary pattern within C. cajan. Various core, hormone-responsive, and stress-responsive cis-regulatory elements were found in promoter regions of REM genes, including TATA-box, CAAT-box, MYB, and G-box. The total estimation of antioxidant enzyme activity revealed the increase in POD and SOD activity, potentially due to a defense mechanism in response to high temperature. RNA sequencing data processing reveals higher expression of CcREM genes in leaf and flower, including CcREM1.1 and CcREM1.2. Furthermore, the differential change in expression was observed in response to high-temperature stress. Among these genes, one upregulated gene (CcREM1.3) and two downregulated genes (CcREM6.1 and CcREM6.5) are potential candidate targets for heat stress response, followed by qRT-PCR validation. Our findings suggest that CcREM1-like and CcREM6-like genes hold significant potential for future climate-smart heat-tolerant breeding of C. cajan.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"205"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06059-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing temperature is a major threat to plant growth and development. It severely alters various biochemical and physiological processes and ultimately affects the overall crop yield. The membrane-based remorin protein-encoding genes (REM) were previously reported as significantly involved in the regulation of various biotic and abiotic stressors. However, these REM genes were not studied in Cajanus Cajan, the sixth most important legume crop due to its rich protein source and traditional medicinal plant. In this study, 17 REM gene orthologs were identified in C. cajan against A. thaliana REM genes and verified through the presence of conserved REM-related domains. Phylogenetic analysis revealed that REM genes were divided into six different groups. All the REM genes were unevenly distributed on 11 chromosomes of C. cajan. 3D protein structures and intron-exon organization indicate conserved evolutionary pattern within C. cajan. Various core, hormone-responsive, and stress-responsive cis-regulatory elements were found in promoter regions of REM genes, including TATA-box, CAAT-box, MYB, and G-box. The total estimation of antioxidant enzyme activity revealed the increase in POD and SOD activity, potentially due to a defense mechanism in response to high temperature. RNA sequencing data processing reveals higher expression of CcREM genes in leaf and flower, including CcREM1.1 and CcREM1.2. Furthermore, the differential change in expression was observed in response to high-temperature stress. Among these genes, one upregulated gene (CcREM1.3) and two downregulated genes (CcREM6.1 and CcREM6.5) are potential candidate targets for heat stress response, followed by qRT-PCR validation. Our findings suggest that CcREM1-like and CcREM6-like genes hold significant potential for future climate-smart heat-tolerant breeding of C. cajan.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Correction: Unraveling the genetic architecture of blueberry fruit quality traits: major loci control organic acid content while more complex genetic mechanisms control texture and sugar content. Effects of different shade treatments on Melaleuca seedling growth and physiological properties. Dissection of transcriptome and metabolome insights into the polyphyllin biosynthesis in Paris. Eco-friendly nano colloids for enhanced black gram (Vigna mungo) seed viability: experimental and computational analysis. Molecular characterization of REM genes in Cajanus cajan suggests the role of CcREM1 and CcREM6 like genes in heat stress response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1