Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia.

IF 5.8 1区 医学 Q1 PSYCHIATRY Translational Psychiatry Pub Date : 2025-02-14 DOI:10.1038/s41398-025-03264-z
Jie Yin Yee, Ser-Xian Phua, Yuen Mei See, Anand Kumar Andiappan, Wilson Wen Bin Goh, Jimmy Lee
{"title":"Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia.","authors":"Jie Yin Yee, Ser-Xian Phua, Yuen Mei See, Anand Kumar Andiappan, Wilson Wen Bin Goh, Jimmy Lee","doi":"10.1038/s41398-025-03264-z","DOIUrl":null,"url":null,"abstract":"<p><p>We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgroups: antipsychotic-responsive, clozapine-responsive, and clozapine-resistant. The cohort comprises 146 schizophrenia patients (49 antipsychotics-responsive, 68 clozapine-responsive, 29 clozapine-resistant) and 49 healthy controls. Protein levels of immune biomarkers were quantified using the Olink Target 96 Inflammation Panel (Olink®, Uppsala, Sweden). To predict labels, a support vector machine (SVM) classifier is trained on the Olink®data matrix and evaluated via leave-one-out cross-validation. Associated protein biomarkers are identified via recursive feature elimination. We constructed three separate predictive models for binary classification: one to discern healthy controls from individuals with schizophrenia (AUC = 0.74), another to differentiate individuals who were responsive to antipsychotics (AUC = 0.88), and a third to distinguish treatment-resistant individuals (AUC = 0.78). Employing machine learning techniques, we identified features capable of distinguishing between treatment response subgroups. In this study, SVM demonstrates the power of machine learning to uncover subtle signals often overlooked by traditional statistics. Unlike t-tests, it handles multiple features simultaneously, capturing complex data relationships. Chosen for simplicity, robustness, and reliance on strong feature sets, its integration with explainable AI techniques like SHapely Additive exPlanations enhances model interpretability, especially for biomarker screening. This study highlights the potential of integrating machine learning techniques in clinical practice. Not only does it deepen our understanding of schizophrenia's heterogeneity, but it also holds promise for enhancing predictive accuracy, thereby facilitating more targeted and effective interventions in the treatment of this complex mental health disorder.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"51"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03264-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgroups: antipsychotic-responsive, clozapine-responsive, and clozapine-resistant. The cohort comprises 146 schizophrenia patients (49 antipsychotics-responsive, 68 clozapine-responsive, 29 clozapine-resistant) and 49 healthy controls. Protein levels of immune biomarkers were quantified using the Olink Target 96 Inflammation Panel (Olink®, Uppsala, Sweden). To predict labels, a support vector machine (SVM) classifier is trained on the Olink®data matrix and evaluated via leave-one-out cross-validation. Associated protein biomarkers are identified via recursive feature elimination. We constructed three separate predictive models for binary classification: one to discern healthy controls from individuals with schizophrenia (AUC = 0.74), another to differentiate individuals who were responsive to antipsychotics (AUC = 0.88), and a third to distinguish treatment-resistant individuals (AUC = 0.78). Employing machine learning techniques, we identified features capable of distinguishing between treatment response subgroups. In this study, SVM demonstrates the power of machine learning to uncover subtle signals often overlooked by traditional statistics. Unlike t-tests, it handles multiple features simultaneously, capturing complex data relationships. Chosen for simplicity, robustness, and reliance on strong feature sets, its integration with explainable AI techniques like SHapely Additive exPlanations enhances model interpretability, especially for biomarker screening. This study highlights the potential of integrating machine learning techniques in clinical practice. Not only does it deepen our understanding of schizophrenia's heterogeneity, but it also holds promise for enhancing predictive accuracy, thereby facilitating more targeted and effective interventions in the treatment of this complex mental health disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
期刊最新文献
Alcohol insensitivity and the incentive salience of alcohol: Two decades of work relevant to future directions of the addictions neuroclinical assessment. mPFC DCC coupling with CaMKII+ neuronal excitation participates in behavioral despair in male mice. Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia. Suicidal risk is associated with hyper-connections in the frontal-parietal network in patients with depression. Transcriptomic profiles link corticostriatal microarchitecture to genetics of neurodevelopment and neuropsychiatric risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1