Leveraging deep learning for nonlinear shape representation in anatomically parameterized statistical shape models.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2025-02-14 DOI:10.1007/s11548-025-03330-3
Behnaz Gheflati, Morteza Mirzaei, Sunil Rottoo, Hassan Rivaz
{"title":"Leveraging deep learning for nonlinear shape representation in anatomically parameterized statistical shape models.","authors":"Behnaz Gheflati, Morteza Mirzaei, Sunil Rottoo, Hassan Rivaz","doi":"10.1007/s11548-025-03330-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Statistical shape models (SSMs) are widely used for morphological assessment of anatomical structures. However, a key limitation is the need for a clear relationship between the model's shape coefficients and clinically relevant anatomical parameters. To address this limitation, this paper proposes a novel deep learning-based anatomically parameterized SSM (DL-ANAT<sub>SSM</sub>) by introducing a nonlinear relationship between anatomical parameters and bone shape information.</p><p><strong>Methods: </strong>Our approach utilizes a multilayer perceptron model trained on a synthetic femoral bone population to learn the nonlinear mapping between anatomical measurements and shape parameters. The trained model is then fine-tuned on a real bone dataset. We compare the performance of DL-ANAT<sub>SSM</sub> with a linear ANAT<sub>SSM</sub> generated using least-squares regression for baseline evaluation.</p><p><strong>Results: </strong>When applied to a previously unseen femoral bone dataset, DL-ANAT<sub>SSM</sub> demonstrated superior performance in predicting 3D bone shape based on anatomical parameters compared to the linear baseline model. The impact of fine-tuning was also investigated, with results indicating improved model performance after this process.</p><p><strong>Conclusion: </strong>The proposed DL-ANAT<sub>SSM</sub> is therefore a more precise and interpretable SSM, which is directly controlled by clinically relevant parameters. The proposed method holds promise for applications in both morphometry analysis and patient-specific 3D model generation without preoperative images.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03330-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Statistical shape models (SSMs) are widely used for morphological assessment of anatomical structures. However, a key limitation is the need for a clear relationship between the model's shape coefficients and clinically relevant anatomical parameters. To address this limitation, this paper proposes a novel deep learning-based anatomically parameterized SSM (DL-ANATSSM) by introducing a nonlinear relationship between anatomical parameters and bone shape information.

Methods: Our approach utilizes a multilayer perceptron model trained on a synthetic femoral bone population to learn the nonlinear mapping between anatomical measurements and shape parameters. The trained model is then fine-tuned on a real bone dataset. We compare the performance of DL-ANATSSM with a linear ANATSSM generated using least-squares regression for baseline evaluation.

Results: When applied to a previously unseen femoral bone dataset, DL-ANATSSM demonstrated superior performance in predicting 3D bone shape based on anatomical parameters compared to the linear baseline model. The impact of fine-tuning was also investigated, with results indicating improved model performance after this process.

Conclusion: The proposed DL-ANATSSM is therefore a more precise and interpretable SSM, which is directly controlled by clinically relevant parameters. The proposed method holds promise for applications in both morphometry analysis and patient-specific 3D model generation without preoperative images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Breaking barriers: noninvasive AI model for BRAFV600E mutation identification. Leveraging deep learning for nonlinear shape representation in anatomically parameterized statistical shape models. Development and validation of a surgical robot system for orbital decompression surgery. Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes. Intraoperative adaptive eye model based on instrument-integrated OCT for robot-assisted vitreoretinal surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1