Elizabeth M. Flint, Matthew J. Ascott, Daren C. Gooddy, Mason O. Stahl, Ben W. J. Surridge
{"title":"Anthropogenic Water Withdrawals Modify Freshwater Inorganic Carbon Fluxes across the United States","authors":"Elizabeth M. Flint, Matthew J. Ascott, Daren C. Gooddy, Mason O. Stahl, Ben W. J. Surridge","doi":"10.1021/acs.est.4c09426","DOIUrl":null,"url":null,"abstract":"Quantifying inorganic carbon fluxes to and from freshwater environments is essential for the accurate determination of the total amount of carbon exported to both the atmosphere and oceans. However, understanding of how anthropogenic freshwater withdrawals perturb land-freshwater-ocean and freshwater-atmosphere inorganic carbon fluxes is limited. Using the United States (US) as an exemplar, we estimate that fresh surface water withdrawals across the country during the year 2015 resulted in a median gross dissolved inorganic carbon (DIC) retention flux of 8.2 (uncertainty range: 6.7–9.9) Tg C yr<sup>–1</sup>, equivalent to 28.3% of the total export of DIC to the oceans from US rivers. The median gross retention flux due to fresh groundwater withdrawals was 6.9 (uncertainty range: 5.3–8.8) Tg C yr<sup>–1</sup>, over eight times the magnitude of the DIC flux to the oceans by US subterranean groundwater discharge. The degassing of CO<sub>2</sub> supersaturated groundwater following withdrawal emitted 3.6 (uncertainty range: 2.2–5.5) Tg of CO<sub>2</sub> yr<sup>–1</sup>, 112% larger than previous estimates. On a county level, these CO<sub>2</sub> emissions exceeded CO<sub>2</sub> emissions from major emitting facilities across 45% of US counties. Reported results and a data analysis framework have important implications for the accurate development of carbon budgets across the US and around the world.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"88 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09426","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying inorganic carbon fluxes to and from freshwater environments is essential for the accurate determination of the total amount of carbon exported to both the atmosphere and oceans. However, understanding of how anthropogenic freshwater withdrawals perturb land-freshwater-ocean and freshwater-atmosphere inorganic carbon fluxes is limited. Using the United States (US) as an exemplar, we estimate that fresh surface water withdrawals across the country during the year 2015 resulted in a median gross dissolved inorganic carbon (DIC) retention flux of 8.2 (uncertainty range: 6.7–9.9) Tg C yr–1, equivalent to 28.3% of the total export of DIC to the oceans from US rivers. The median gross retention flux due to fresh groundwater withdrawals was 6.9 (uncertainty range: 5.3–8.8) Tg C yr–1, over eight times the magnitude of the DIC flux to the oceans by US subterranean groundwater discharge. The degassing of CO2 supersaturated groundwater following withdrawal emitted 3.6 (uncertainty range: 2.2–5.5) Tg of CO2 yr–1, 112% larger than previous estimates. On a county level, these CO2 emissions exceeded CO2 emissions from major emitting facilities across 45% of US counties. Reported results and a data analysis framework have important implications for the accurate development of carbon budgets across the US and around the world.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.