Wenyuan Su, Wenqing Liang, Zhendong Yang, Xiang Huang, Pu Wang, Jiyan Liu, Ting Ruan, Guibin Jiang
{"title":"Identification and Prioritization of Emerging Organophosphorus Compounds Beyond Organophosphate Esters in Chinese Estuarine Waters","authors":"Wenyuan Su, Wenqing Liang, Zhendong Yang, Xiang Huang, Pu Wang, Jiyan Liu, Ting Ruan, Guibin Jiang","doi":"10.1021/acs.est.4c09869","DOIUrl":null,"url":null,"abstract":"Organophosphorus compounds (OPCs) pose potential hazards to human health and aquatic ecosystems. However, limited knowledge of emerging OPCs beyond organophosphate esters (OPEs) hinders a thorough understanding of the environmental occurrence and exposure risks. Through target, suspect, and nontarget screening analysis, 64 OPCs were successfully identified in Chinese estuarine waters, including 24 known OPEs and 40 emerging analogues (i.e., quaternary phosphonium, phosphine oxide, organophosphonate, and organothiophosphate esters). Domestic wastewater and agricultural and industrial discharges were factors influencing the OPC distribution patterns. In particular, quaternary phosphoniums and phosphine oxides accounted for over 50% of the total OPC loading in the Yellow and Jia Rivers, which were likely polluted by phosphorus-related industries. Risk quotient (RQ) calculations showed that tetrabutylphosphonium contributed the most to algae toxicity due to the biocidal effects of onium salts, while chloroalkyl OPEs dominated the ecological risks for daphnia and fish. The multicriteria decision analysis approach was further introduced for relative chemical ranking by considering the variations in hazard criteria of environmental occurrence, fate, and toxicity of the OPCs. The results indicate that aryl phosphoniums and aryl phosphine oxides have a hazard priority similar to that of the OPEs and, therefore, require more attention.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"180 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09869","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphorus compounds (OPCs) pose potential hazards to human health and aquatic ecosystems. However, limited knowledge of emerging OPCs beyond organophosphate esters (OPEs) hinders a thorough understanding of the environmental occurrence and exposure risks. Through target, suspect, and nontarget screening analysis, 64 OPCs were successfully identified in Chinese estuarine waters, including 24 known OPEs and 40 emerging analogues (i.e., quaternary phosphonium, phosphine oxide, organophosphonate, and organothiophosphate esters). Domestic wastewater and agricultural and industrial discharges were factors influencing the OPC distribution patterns. In particular, quaternary phosphoniums and phosphine oxides accounted for over 50% of the total OPC loading in the Yellow and Jia Rivers, which were likely polluted by phosphorus-related industries. Risk quotient (RQ) calculations showed that tetrabutylphosphonium contributed the most to algae toxicity due to the biocidal effects of onium salts, while chloroalkyl OPEs dominated the ecological risks for daphnia and fish. The multicriteria decision analysis approach was further introduced for relative chemical ranking by considering the variations in hazard criteria of environmental occurrence, fate, and toxicity of the OPCs. The results indicate that aryl phosphoniums and aryl phosphine oxides have a hazard priority similar to that of the OPEs and, therefore, require more attention.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.