Jing Lu , Hongdi Wei , Xinyu Yao , Yuelin Chen , Meitong Liu , Shuang Guan
{"title":"Glycidol induces necroptosis and inflammation through autophagy-necrosome pathway in renal cell and mice","authors":"Jing Lu , Hongdi Wei , Xinyu Yao , Yuelin Chen , Meitong Liu , Shuang Guan","doi":"10.1016/j.scitotenv.2025.178852","DOIUrl":null,"url":null,"abstract":"<div><div>Glycidol is a common food contaminant, and its main target organ is the kidney. However, the mechanism of nephrotoxicity of glycidol has not been fully elucidated. In this paper, we investigated the mechanism of glycidol toxicity in mice kidneys and NRK-52E cells. We found that glycidol exposure induced necroptosis in renal cells through the RIPK1/RIPK3/MLKL pathway. Mechanistically, it was further found that glycidol blocked renal cell autophagy and induced ectopic aggregation of p62. Accumulated p62 recruited RIPK1 and activated downstream RIPK1/RIPK3/MLKL necrosome production. At the same time, the accumulated p62 could also participate in the activation of intracellular NF-κB nuclear transcription factor by interacting with RIPK1 to form a signalling complex, which promoted the secretion of inflammatory factors TNF-α and IL-1β, and induced inflammation in the kidney. Our present study provided a new understanding of the complex mechanism of glycidol on renal injury.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"968 ","pages":"Article 178852"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725004875","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glycidol is a common food contaminant, and its main target organ is the kidney. However, the mechanism of nephrotoxicity of glycidol has not been fully elucidated. In this paper, we investigated the mechanism of glycidol toxicity in mice kidneys and NRK-52E cells. We found that glycidol exposure induced necroptosis in renal cells through the RIPK1/RIPK3/MLKL pathway. Mechanistically, it was further found that glycidol blocked renal cell autophagy and induced ectopic aggregation of p62. Accumulated p62 recruited RIPK1 and activated downstream RIPK1/RIPK3/MLKL necrosome production. At the same time, the accumulated p62 could also participate in the activation of intracellular NF-κB nuclear transcription factor by interacting with RIPK1 to form a signalling complex, which promoted the secretion of inflammatory factors TNF-α and IL-1β, and induced inflammation in the kidney. Our present study provided a new understanding of the complex mechanism of glycidol on renal injury.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.