Chemical responses of small boreal lakes to atmospheric and catchment drivers over four decades

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-02-20 DOI:10.1016/j.scitotenv.2025.178696
Lauri Arvola , Martti Rask , Jussi Huotari , Tiina Tulonen , Kimmo K. Kahilainen , Jukka Ruuhijärvi , Henrik Lindberg , Risto Viitala , Clarisse Blanchet , Celine Arzel , Petri Nummi , Kalevi Salonen
{"title":"Chemical responses of small boreal lakes to atmospheric and catchment drivers over four decades","authors":"Lauri Arvola ,&nbsp;Martti Rask ,&nbsp;Jussi Huotari ,&nbsp;Tiina Tulonen ,&nbsp;Kimmo K. Kahilainen ,&nbsp;Jukka Ruuhijärvi ,&nbsp;Henrik Lindberg ,&nbsp;Risto Viitala ,&nbsp;Clarisse Blanchet ,&nbsp;Celine Arzel ,&nbsp;Petri Nummi ,&nbsp;Kalevi Salonen","doi":"10.1016/j.scitotenv.2025.178696","DOIUrl":null,"url":null,"abstract":"<div><div>During the last few decades organic matter concentrations and water colour values have increased in a large number of lakes and rivers in Eurasia and North America. The upward shift in colour, often called water browning, and shortage of mobile cations have been linked to the recovery of catchments and lakes from acid deposition and increased precipitation. Here, long-term water chemistry responses of 33 boreal forest lakes to atmospheric and catchment scale drivers were studied in a small drainage basin in southern Finland. The longest data series cover four decades starting in 1979, and thus include the period of highest acid deposition in the middle of the 1980s and its dramatic decline during the next decade. The water quality data was taken during the autumn mixing, and in this long-term data set water colour increased significantly in 23 lakes, and the most uniform increase took place in the 1990s. In lakes fed predominantly by surface-waters, colour and iron have largely behaved in parallel, both responding to the variation in hydrology with higher concentrations after wet summers. Seepage lakes, in contrast, have responded to rainy periods less noticeably. In accordance with previous studies, the results indicate that most recent changes in colour have been hydrologically driven and are lake-specific rather than consistent among the lakes. In the long-term, the base cation concentrations have declined in most lakes, resulting in electrolyte dilution, loss of alkalinity, and decreased pH. In the uppermost headwater surface water lakes, iron concentrations showed an increasing trend since 1990, but in this century the trends have been less clear. Overall, the results suggest that 25 years after the most rapid reduction in atmospheric deposition, the studied lakes are still undergoing chemical recovery. Forestry practices and beavers may have impacted on many lakes as well, complicating interpretation of the chemistry patterns caused by changes in deposition and hydrological conditions, and lake-specific characteristics.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"968 ","pages":"Article 178696"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725003304","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During the last few decades organic matter concentrations and water colour values have increased in a large number of lakes and rivers in Eurasia and North America. The upward shift in colour, often called water browning, and shortage of mobile cations have been linked to the recovery of catchments and lakes from acid deposition and increased precipitation. Here, long-term water chemistry responses of 33 boreal forest lakes to atmospheric and catchment scale drivers were studied in a small drainage basin in southern Finland. The longest data series cover four decades starting in 1979, and thus include the period of highest acid deposition in the middle of the 1980s and its dramatic decline during the next decade. The water quality data was taken during the autumn mixing, and in this long-term data set water colour increased significantly in 23 lakes, and the most uniform increase took place in the 1990s. In lakes fed predominantly by surface-waters, colour and iron have largely behaved in parallel, both responding to the variation in hydrology with higher concentrations after wet summers. Seepage lakes, in contrast, have responded to rainy periods less noticeably. In accordance with previous studies, the results indicate that most recent changes in colour have been hydrologically driven and are lake-specific rather than consistent among the lakes. In the long-term, the base cation concentrations have declined in most lakes, resulting in electrolyte dilution, loss of alkalinity, and decreased pH. In the uppermost headwater surface water lakes, iron concentrations showed an increasing trend since 1990, but in this century the trends have been less clear. Overall, the results suggest that 25 years after the most rapid reduction in atmospheric deposition, the studied lakes are still undergoing chemical recovery. Forestry practices and beavers may have impacted on many lakes as well, complicating interpretation of the chemistry patterns caused by changes in deposition and hydrological conditions, and lake-specific characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Disconnect between settlement and fishery recruitment driven by decadal changes in nearshore habitats A global soil spectral grid based on space sensing Chemical responses of small boreal lakes to atmospheric and catchment drivers over four decades Farmland change at different altitudes: A global analysis of climate and anthropogenic influences Cancer risk due to ingestion of naturally occurring radionuclides through drinking water: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1