Zahra Shahroodi , David Zidar , Vahid Momeni , Florian Arbeiter , Ivica Duretek , Nina Krempl , Gerald Berger-Weber , Clemens Holzer
{"title":"Tailored recycled composites: Enhancing the performance of injection moulded post-consumer polypropylene composites using Box-Behnken Design","authors":"Zahra Shahroodi , David Zidar , Vahid Momeni , Florian Arbeiter , Ivica Duretek , Nina Krempl , Gerald Berger-Weber , Clemens Holzer","doi":"10.1016/j.polymertesting.2025.108743","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of material composition and processing parameters on glass fibre-reinforced recycled polypropylene (rPP) flakes through mechanical and rheological testing. Using a three-factor, three-level Box-Behnken Design (BBD) within Response Surface Methodology (RSM), the effects of glass fibre flake content, additive content, and extruder screw speed on the properties of injection-moulded samples were evaluated. Analysis of variance (ANOVA) and cross-validation were conducted to assess the influence of these parameters on tensile and rheological properties. The key objective was to maximize tensile modulus (E<sub>t</sub>) without compromising tensile strength. The results showed a 60 % increase in E<sub>t</sub> by optimizing extruder screw speed and flake content, achieving the highest E<sub>t</sub> (4.1 GPa) at a screw speed of 150 rpm, 50 wt% flake content, and 5 wt% additive. The additive contributed up to a 20 % increase in E<sub>t</sub> but primarily influenced rheological behaviour. Glass fibre flake content was the most significant factor affecting mechanical and rheological properties, with additive content enhancing flow characteristics. These findings highlight the potential to optimize glass fibre-reinforced rPP composites for improved performance, offering a sustainable material solution for applications in diverse industries.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"144 ","pages":"Article 108743"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000571","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of material composition and processing parameters on glass fibre-reinforced recycled polypropylene (rPP) flakes through mechanical and rheological testing. Using a three-factor, three-level Box-Behnken Design (BBD) within Response Surface Methodology (RSM), the effects of glass fibre flake content, additive content, and extruder screw speed on the properties of injection-moulded samples were evaluated. Analysis of variance (ANOVA) and cross-validation were conducted to assess the influence of these parameters on tensile and rheological properties. The key objective was to maximize tensile modulus (Et) without compromising tensile strength. The results showed a 60 % increase in Et by optimizing extruder screw speed and flake content, achieving the highest Et (4.1 GPa) at a screw speed of 150 rpm, 50 wt% flake content, and 5 wt% additive. The additive contributed up to a 20 % increase in Et but primarily influenced rheological behaviour. Glass fibre flake content was the most significant factor affecting mechanical and rheological properties, with additive content enhancing flow characteristics. These findings highlight the potential to optimize glass fibre-reinforced rPP composites for improved performance, offering a sustainable material solution for applications in diverse industries.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.