Proactive robot task sequencing through real-time hand motion prediction in human–robot collaboration

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-15 DOI:10.1016/j.imavis.2025.105443
Shyngyskhan Abilkassov , Michael Gentner , Almas Shintemirov , Eckehard Steinbach , Mirela Popa
{"title":"Proactive robot task sequencing through real-time hand motion prediction in human–robot collaboration","authors":"Shyngyskhan Abilkassov ,&nbsp;Michael Gentner ,&nbsp;Almas Shintemirov ,&nbsp;Eckehard Steinbach ,&nbsp;Mirela Popa","doi":"10.1016/j.imavis.2025.105443","DOIUrl":null,"url":null,"abstract":"<div><div>Human–robot collaboration (HRC) is essential for improving productivity and safety across various industries. While reactive motion re-planning strategies are useful, there is a growing demand for proactive methods that predict human intentions to enable more efficient collaboration. This study addresses this need by introducing a framework that combines deep learning-based human hand trajectory forecasting with heuristic optimization for robotic task sequencing. The deep learning model advances real-time hand position forecasting using a multi-task learning loss to account for both hand positions and contact delay regression, achieving state-of-the-art performance on the Ego4D Future Hand Prediction benchmark. By integrating hand trajectory predictions into task planning, the framework offers a cohesive solution for HRC. To optimize task sequencing, the framework incorporates a Dynamic Variable Neighborhood Search (DynamicVNS) heuristic algorithm, which allows robots to pre-plan task sequences and avoid potential collisions with human hand positions. DynamicVNS provides significant computational advantages over the generalized VNS method. The framework was validated on a UR10e robot performing a visual inspection task in a HRC scenario, where the robot effectively anticipated and responded to human hand movements in a shared workspace. Experimental results highlight the system’s effectiveness and potential to enhance HRC in industrial settings by combining predictive accuracy and task planning efficiency.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105443"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000319","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human–robot collaboration (HRC) is essential for improving productivity and safety across various industries. While reactive motion re-planning strategies are useful, there is a growing demand for proactive methods that predict human intentions to enable more efficient collaboration. This study addresses this need by introducing a framework that combines deep learning-based human hand trajectory forecasting with heuristic optimization for robotic task sequencing. The deep learning model advances real-time hand position forecasting using a multi-task learning loss to account for both hand positions and contact delay regression, achieving state-of-the-art performance on the Ego4D Future Hand Prediction benchmark. By integrating hand trajectory predictions into task planning, the framework offers a cohesive solution for HRC. To optimize task sequencing, the framework incorporates a Dynamic Variable Neighborhood Search (DynamicVNS) heuristic algorithm, which allows robots to pre-plan task sequences and avoid potential collisions with human hand positions. DynamicVNS provides significant computational advantages over the generalized VNS method. The framework was validated on a UR10e robot performing a visual inspection task in a HRC scenario, where the robot effectively anticipated and responded to human hand movements in a shared workspace. Experimental results highlight the system’s effectiveness and potential to enhance HRC in industrial settings by combining predictive accuracy and task planning efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
Proactive robot task sequencing through real-time hand motion prediction in human–robot collaboration Two-modal multiscale feature cross fusion for hyperspectral unmixing CMASR: Lightweight image super-resolution with cluster and match attention FGS-NeRF: A fast glossy surface reconstruction method based on voxel and reflection directions ESDA: Zero-shot semantic segmentation based on an embedding semantic space distribution adjustment strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1