{"title":"Proactive robot task sequencing through real-time hand motion prediction in human–robot collaboration","authors":"Shyngyskhan Abilkassov , Michael Gentner , Almas Shintemirov , Eckehard Steinbach , Mirela Popa","doi":"10.1016/j.imavis.2025.105443","DOIUrl":null,"url":null,"abstract":"<div><div>Human–robot collaboration (HRC) is essential for improving productivity and safety across various industries. While reactive motion re-planning strategies are useful, there is a growing demand for proactive methods that predict human intentions to enable more efficient collaboration. This study addresses this need by introducing a framework that combines deep learning-based human hand trajectory forecasting with heuristic optimization for robotic task sequencing. The deep learning model advances real-time hand position forecasting using a multi-task learning loss to account for both hand positions and contact delay regression, achieving state-of-the-art performance on the Ego4D Future Hand Prediction benchmark. By integrating hand trajectory predictions into task planning, the framework offers a cohesive solution for HRC. To optimize task sequencing, the framework incorporates a Dynamic Variable Neighborhood Search (DynamicVNS) heuristic algorithm, which allows robots to pre-plan task sequences and avoid potential collisions with human hand positions. DynamicVNS provides significant computational advantages over the generalized VNS method. The framework was validated on a UR10e robot performing a visual inspection task in a HRC scenario, where the robot effectively anticipated and responded to human hand movements in a shared workspace. Experimental results highlight the system’s effectiveness and potential to enhance HRC in industrial settings by combining predictive accuracy and task planning efficiency.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105443"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000319","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Human–robot collaboration (HRC) is essential for improving productivity and safety across various industries. While reactive motion re-planning strategies are useful, there is a growing demand for proactive methods that predict human intentions to enable more efficient collaboration. This study addresses this need by introducing a framework that combines deep learning-based human hand trajectory forecasting with heuristic optimization for robotic task sequencing. The deep learning model advances real-time hand position forecasting using a multi-task learning loss to account for both hand positions and contact delay regression, achieving state-of-the-art performance on the Ego4D Future Hand Prediction benchmark. By integrating hand trajectory predictions into task planning, the framework offers a cohesive solution for HRC. To optimize task sequencing, the framework incorporates a Dynamic Variable Neighborhood Search (DynamicVNS) heuristic algorithm, which allows robots to pre-plan task sequences and avoid potential collisions with human hand positions. DynamicVNS provides significant computational advantages over the generalized VNS method. The framework was validated on a UR10e robot performing a visual inspection task in a HRC scenario, where the robot effectively anticipated and responded to human hand movements in a shared workspace. Experimental results highlight the system’s effectiveness and potential to enhance HRC in industrial settings by combining predictive accuracy and task planning efficiency.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.