{"title":"Two-modal multiscale feature cross fusion for hyperspectral unmixing","authors":"Senlong Qin, Yuqi Hao, Minghui Chu, Xiaodong Yu","doi":"10.1016/j.imavis.2025.105445","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperspectral images (HSI) possess rich spectral characteristics but suffer from low spatial resolution, which has led many methods to focus on extracting more spatial information from HSI. However, the spatial information that can be extracted from a single HSI is limited, making it difficult to distinguish objects with similar materials. To address this issue, we propose a multimodal unmixing network called MSFF-Net. This network enhances unmixing performance by integrating the spatial information from light detection and ranging (LiDAR) data into the unmixing process. To ensure a more comprehensive fusion of features from the two modalities, we introduce a multi-scale cross-fusion method, providing a new approach to multimodal data fusion. Additionally, the network employs attention mechanisms to enhance channel-wise and spatial features, boosting the model's representational capacity. Our proposed model effectively consolidates multimodal information, significantly improving its unmixing capability, especially in complex environments, leading to more accurate unmixing results and facilitating further analysis of HSI. We evaluate our method using two real-world datasets. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in terms of both stability and effectiveness.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105445"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000332","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral images (HSI) possess rich spectral characteristics but suffer from low spatial resolution, which has led many methods to focus on extracting more spatial information from HSI. However, the spatial information that can be extracted from a single HSI is limited, making it difficult to distinguish objects with similar materials. To address this issue, we propose a multimodal unmixing network called MSFF-Net. This network enhances unmixing performance by integrating the spatial information from light detection and ranging (LiDAR) data into the unmixing process. To ensure a more comprehensive fusion of features from the two modalities, we introduce a multi-scale cross-fusion method, providing a new approach to multimodal data fusion. Additionally, the network employs attention mechanisms to enhance channel-wise and spatial features, boosting the model's representational capacity. Our proposed model effectively consolidates multimodal information, significantly improving its unmixing capability, especially in complex environments, leading to more accurate unmixing results and facilitating further analysis of HSI. We evaluate our method using two real-world datasets. Experimental results demonstrate that our proposed approach outperforms other state-of-the-art methods in terms of both stability and effectiveness.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.