{"title":"Multivariate failure prognosis of cutting tools under heterogeneous operating conditions","authors":"Zhenggeng Ye , Le Wang , Hui Yang , Zhiqiang Cai","doi":"10.1016/j.aei.2025.103198","DOIUrl":null,"url":null,"abstract":"<div><div>Failure risk prognosis is indispensable to predict the remaining useful life (RUL) of cutting tools, thereby improving the timely maintenance and boosting the productivity of manufacturing systems. However, the heterogeneity of working conditions is holding back this target. Traditional methods do not discern lifetime data from heterogeneous working conditions but rather aggregate these data for parameter estimation. As such, most of the existing methods become inflexible and cannot adequately handle dynamic and heterogeneous working conditions. Therefore, this paper presents a novel knowledge-driven prognostic framework to integrate the physical feature-based classification model of homogeneous working conditions with the failure risk prognosis of RUL. This new framework effectively identifies and categorizes various types of working conditions with a similarity-evaluation method. Further, a multivariate model integrating lifetime variabilities under homogeneous conditions and real-time prior information is proposed for fault risk and RUL prognosis. This work provides a novel prognostic approach for future risks even with the uncertainty of working conditions. Finally, a case study with degradation datasets of milling insert in the machining center is performed to evaluate and validate the effectiveness of the proposed framework.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103198"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000916","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Failure risk prognosis is indispensable to predict the remaining useful life (RUL) of cutting tools, thereby improving the timely maintenance and boosting the productivity of manufacturing systems. However, the heterogeneity of working conditions is holding back this target. Traditional methods do not discern lifetime data from heterogeneous working conditions but rather aggregate these data for parameter estimation. As such, most of the existing methods become inflexible and cannot adequately handle dynamic and heterogeneous working conditions. Therefore, this paper presents a novel knowledge-driven prognostic framework to integrate the physical feature-based classification model of homogeneous working conditions with the failure risk prognosis of RUL. This new framework effectively identifies and categorizes various types of working conditions with a similarity-evaluation method. Further, a multivariate model integrating lifetime variabilities under homogeneous conditions and real-time prior information is proposed for fault risk and RUL prognosis. This work provides a novel prognostic approach for future risks even with the uncertainty of working conditions. Finally, a case study with degradation datasets of milling insert in the machining center is performed to evaluate and validate the effectiveness of the proposed framework.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.