{"title":"FD-LLM: Large language model for fault diagnosis of complex equipment","authors":"Lin Lin, Sihao Zhang, Song Fu, Yikun Liu","doi":"10.1016/j.aei.2025.103208","DOIUrl":null,"url":null,"abstract":"<div><div>In complex equipment fault diagnosis, traditional deep learning-based fault diagnosis methods usually require special design and training of “one model for one scenario,” the features of different fault categories overlap seriously, making misdiagnosis easy to occur. The Multimodal Large Language Model (MM-LLM) demonstrates strong multimodal understanding and logical reasoning abilities. This article attempts to use MM-LLM for complex equipment fault diagnosis to yield higher diagnostic accuracy. However, existing MM-LLMs lack domain-specific knowledge and modal alignment training for engineering time-series data, limiting their effectiveness in industrial fault diagnosis tasks. This article proposes a new fault diagnosis method based on MM-LLM in response to the above issues. First, by conducting modal alignment training on the description text of engineering data and equipment operation status in the feature space, the ability of the LLM to understand time-series data modalities is activated. Second, a fuzzy semantic embedding method is proposed to address the difficulty of identifying engineering data with pattern aliasing in the feature space. In addition, supplementary fault diagnosis background knowledge is introduced into MM-LLM by a learnable prompt embedding. Finally, the LORA method is used to fine-tune the LLM. Experimental results show that the proposed method can achieve higher fault classification accuracy.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103208"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625001016","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In complex equipment fault diagnosis, traditional deep learning-based fault diagnosis methods usually require special design and training of “one model for one scenario,” the features of different fault categories overlap seriously, making misdiagnosis easy to occur. The Multimodal Large Language Model (MM-LLM) demonstrates strong multimodal understanding and logical reasoning abilities. This article attempts to use MM-LLM for complex equipment fault diagnosis to yield higher diagnostic accuracy. However, existing MM-LLMs lack domain-specific knowledge and modal alignment training for engineering time-series data, limiting their effectiveness in industrial fault diagnosis tasks. This article proposes a new fault diagnosis method based on MM-LLM in response to the above issues. First, by conducting modal alignment training on the description text of engineering data and equipment operation status in the feature space, the ability of the LLM to understand time-series data modalities is activated. Second, a fuzzy semantic embedding method is proposed to address the difficulty of identifying engineering data with pattern aliasing in the feature space. In addition, supplementary fault diagnosis background knowledge is introduced into MM-LLM by a learnable prompt embedding. Finally, the LORA method is used to fine-tune the LLM. Experimental results show that the proposed method can achieve higher fault classification accuracy.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.