{"title":"Discussion on “Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”","authors":"Paolo Maranzano, Paul A. Parker","doi":"10.1002/env.70001","DOIUrl":null,"url":null,"abstract":"<p>We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70001","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We contribute to the discussion of the insightful article “Assessing predictability of environmental time series with statistical and machine learning models” by Bonas et al. (2024), in which the authors commend their effort in comparing a wide range of methodologies for the challenging task of predicting environmental time series data. We focus our discussion on two topics of interest to us. First, we consider extensions of the explored methodologies that allow for heteroscedastic error terms. Second, we consider non-Gaussianity and fitting models on transformed data. For both of these points, we will make use of the authors' supplied code and data in order to extend their examples. Ultimately, we find that modeling of heteroscedasticity error terms has the potential to improve both point and interval estimates for these environmental time series. We also find that the use of transformations to handle non-Gaussianity can improve interval estimates.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.