{"title":"“Assessing Predictability of Environmental Time Series With Statistical and Machine Learning Models”","authors":"Nathaniel K. Newlands, Vyacheslav Lyubchich","doi":"10.1002/env.70000","DOIUrl":null,"url":null,"abstract":"<p>The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70000","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The relative merits of machine learning and statistical methods are discussed recently by Bonas et al. 2004, who raise important open questions for the statistical community regarding the value-added benefits of data science and the future role of environmental statistics. Specifically, they identify three major knowledge gaps where statistics is seen as crucial to strengthening inference in machine learning (ML): to provide an ML model-based framework amenable to explainability, to determine the best approach for quantifying uncertainty in relation to complex environmental dynamics, and to comprehensively identify ML's value-added benefits. We continue this discussion by exploring these general questions and sharing our perspective and insights from our modeling of marine and terrestrial ecosystem dynamics. We propose several lines of inquiry where environmental statisticians and data scientists could collaboratively advance predictive analytics.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.