Development and validation of MRI-derived deep learning score for non-invasive prediction of PD-L1 expression and prognostic stratification in head and neck squamous cell carcinoma.
Cong Ding, Yue Kang, Fan Bai, Genji Bai, Junfang Xian
{"title":"Development and validation of MRI-derived deep learning score for non-invasive prediction of PD-L1 expression and prognostic stratification in head and neck squamous cell carcinoma.","authors":"Cong Ding, Yue Kang, Fan Bai, Genji Bai, Junfang Xian","doi":"10.1186/s40644-025-00837-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunotherapy has revolutionized the treatment landscape for head and neck squamous cell carcinoma (HNSCC) and PD-L1 combined positivity score (CPS) scoring is recommended as a biomarker for immunotherapy. Therefore, this study aimed to develop an MRI-based deep learning score (DLS) to non-invasively assess PD-L1 expression status in HNSCC patients and evaluate its potential effeciency in predicting prognostic stratification following treatment with immune checkpoint inhibitors (ICI).</p><p><strong>Methods: </strong>In this study, we collected data from four patient cohorts comprising a total of 610 HNSCC patients from two separate institutions. We developed deep learning models based on the ResNet-101 convolutional neural network to analyze three MRI sequences (T1WI, T2WI, and contrast-enhanced T1WI). Tumor regions were manually segmented, and features extracted from different MRI sequences were fused using a transformer-based model incorporating attention mechanisms. The model's performance in predicting PD-L1 expression was evaluated using the area under the curve (AUC), sensitivity, specificity, and calibration metrics. Survival analyses were conducted using Kaplan-Meier survival curves and log-rank tests to evaluate the prognostic significance of the DLS.</p><p><strong>Results: </strong>The DLS demonstrated high predictive accuracy for PD-L1 expression, achieving an AUC of 0.981, 0.860 and 0.803 in the training, internal and external validation cohort. Patients with higher DLS scores demonstrated significantly improved progression-free survival (PFS) in both the internal validation cohort (hazard ratio: 0.491; 95% CI, 0.270-0.892; P = 0.005) and the external validation cohort (hazard ratio: 0.617; 95% CI, 0.391-0.973; P = 0.040). In the ICI-treated cohort, the DLS achieved an AUC of 0.739 for predicting durable clinical benefit (DCB).</p><p><strong>Conclusions: </strong>The proposed DLS offered a non-invasive and accurate approach for assessing PD-L1 expression in patients with HNSCC and effectively stratified HNSCC patients to benefit from immunotherapy based on PFS.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"14"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00837-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Immunotherapy has revolutionized the treatment landscape for head and neck squamous cell carcinoma (HNSCC) and PD-L1 combined positivity score (CPS) scoring is recommended as a biomarker for immunotherapy. Therefore, this study aimed to develop an MRI-based deep learning score (DLS) to non-invasively assess PD-L1 expression status in HNSCC patients and evaluate its potential effeciency in predicting prognostic stratification following treatment with immune checkpoint inhibitors (ICI).
Methods: In this study, we collected data from four patient cohorts comprising a total of 610 HNSCC patients from two separate institutions. We developed deep learning models based on the ResNet-101 convolutional neural network to analyze three MRI sequences (T1WI, T2WI, and contrast-enhanced T1WI). Tumor regions were manually segmented, and features extracted from different MRI sequences were fused using a transformer-based model incorporating attention mechanisms. The model's performance in predicting PD-L1 expression was evaluated using the area under the curve (AUC), sensitivity, specificity, and calibration metrics. Survival analyses were conducted using Kaplan-Meier survival curves and log-rank tests to evaluate the prognostic significance of the DLS.
Results: The DLS demonstrated high predictive accuracy for PD-L1 expression, achieving an AUC of 0.981, 0.860 and 0.803 in the training, internal and external validation cohort. Patients with higher DLS scores demonstrated significantly improved progression-free survival (PFS) in both the internal validation cohort (hazard ratio: 0.491; 95% CI, 0.270-0.892; P = 0.005) and the external validation cohort (hazard ratio: 0.617; 95% CI, 0.391-0.973; P = 0.040). In the ICI-treated cohort, the DLS achieved an AUC of 0.739 for predicting durable clinical benefit (DCB).
Conclusions: The proposed DLS offered a non-invasive and accurate approach for assessing PD-L1 expression in patients with HNSCC and effectively stratified HNSCC patients to benefit from immunotherapy based on PFS.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.