Yanjia Wang, Dong Yang, Ye Yuan, Jing Zhang, Francis T. K. Au
{"title":"Hybrid physics‐informed neural network with parametric identification for modeling bridge temperature distribution","authors":"Yanjia Wang, Dong Yang, Ye Yuan, Jing Zhang, Francis T. K. Au","doi":"10.1111/mice.13436","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel hybrid multi‐model thermo‐temporal physics‐informed neural network (TT‐PINN) framework for thermal loading prediction in composite bridge decks. Unlike the existing PINN applications in heat transfer that focus on simple geometries, this framework uniquely addresses multi‐material domains and realistic boundary conditions through a dual‐network architecture designed for composite structures. The framework further incorporates the environmental boundary conditions of natural convection and solar radiation into the loss function and employs transfer learning for efficient adaptation to varying conditions. Moreover, a transfer learning mechanism enables rapid adaptation to new environmental states, thus markedly reducing the computations as compared to the conventional finite element method (FEM). Through noise‐augmented training and parameter identification, the TT‐PINN effectively handles the real‐world monitoring data uncertainties and allows material property calibration with limited sensor data. The framework's ability to capture complex thermal behavior is validated by studying a cable‐stayed bridge. It significantly reduces the computational costs as compared to the traditional FEM approaches.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"12 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13436","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel hybrid multi‐model thermo‐temporal physics‐informed neural network (TT‐PINN) framework for thermal loading prediction in composite bridge decks. Unlike the existing PINN applications in heat transfer that focus on simple geometries, this framework uniquely addresses multi‐material domains and realistic boundary conditions through a dual‐network architecture designed for composite structures. The framework further incorporates the environmental boundary conditions of natural convection and solar radiation into the loss function and employs transfer learning for efficient adaptation to varying conditions. Moreover, a transfer learning mechanism enables rapid adaptation to new environmental states, thus markedly reducing the computations as compared to the conventional finite element method (FEM). Through noise‐augmented training and parameter identification, the TT‐PINN effectively handles the real‐world monitoring data uncertainties and allows material property calibration with limited sensor data. The framework's ability to capture complex thermal behavior is validated by studying a cable‐stayed bridge. It significantly reduces the computational costs as compared to the traditional FEM approaches.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.