Tunable Transmissive Metasurface Based on Thin-Film Lithium Niobate

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2025-02-05 DOI:10.1021/acsphotonics.4c0235410.1021/acsphotonics.4c02354
Zetian Chen*, Noa Mazurski, Jacob Engelberg and Uriel Levy*, 
{"title":"Tunable Transmissive Metasurface Based on Thin-Film Lithium Niobate","authors":"Zetian Chen*,&nbsp;Noa Mazurski,&nbsp;Jacob Engelberg and Uriel Levy*,&nbsp;","doi":"10.1021/acsphotonics.4c0235410.1021/acsphotonics.4c02354","DOIUrl":null,"url":null,"abstract":"<p >In this work, we present a free-space transmissive light amplitude modulator based on thin-film lithium niobate on an insulator platform with an indium tin oxide meta-grating. The design leverages guided mode resonances induced by the transparent conductive oxide layer, enabling efficient electrooptical modulation in the near-infrared region. By integrating transparent conductive oxide both as electrical contact and as the resonating structure, the device eliminates the need for complex alignment during fabrication and minimizes optical losses associated with metallic contacts. We experimentally demonstrate that the device achieves a fundamental mode resonance at 968.5 nm with a quality factor of 440. The electrooptical tuning efficiency is thoroughly investigated across different modes using measurements and simulations. A notable resonance shift of 0.38 nm is observed for the fundamental mode under a ±10 V bias, while a maximum modulation amplitude of 4.6% is achieved with a higher-order mode. Furthermore, the device exploits incident angle tuning as an additional degree of freedom, effectively splitting and sensitively shifting resonances. The new resonances can provide electrooptic tunability. These results highlight the potential of this compact and scalable design for applications in spatial light modulation, optical communications, and tunable optics.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"1174–1183 1174–1183"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphotonics.4c02354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02354","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a free-space transmissive light amplitude modulator based on thin-film lithium niobate on an insulator platform with an indium tin oxide meta-grating. The design leverages guided mode resonances induced by the transparent conductive oxide layer, enabling efficient electrooptical modulation in the near-infrared region. By integrating transparent conductive oxide both as electrical contact and as the resonating structure, the device eliminates the need for complex alignment during fabrication and minimizes optical losses associated with metallic contacts. We experimentally demonstrate that the device achieves a fundamental mode resonance at 968.5 nm with a quality factor of 440. The electrooptical tuning efficiency is thoroughly investigated across different modes using measurements and simulations. A notable resonance shift of 0.38 nm is observed for the fundamental mode under a ±10 V bias, while a maximum modulation amplitude of 4.6% is achieved with a higher-order mode. Furthermore, the device exploits incident angle tuning as an additional degree of freedom, effectively splitting and sensitively shifting resonances. The new resonances can provide electrooptic tunability. These results highlight the potential of this compact and scalable design for applications in spatial light modulation, optical communications, and tunable optics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Real-time Hyperspectral Imager with High Spatial-Spectral Resolution Enabled by Massively Parallel Neural Network Ultralow Loss Design Methodology for Energy-Efficient Thermo-Optic Phase Shifters Photonic NP-Complete Problem Solver Enabled by Local Spatial Frequency Encoding Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1