Huaqing Qiu, Mathias Prost, David Coenen, Tangla David Kongnyuy, Manuel Reza, Guillaume Croes, Maliheh Ramezani, Puvendren Subramaniam, Herman Oprins, Hao Hu, Joost Brouckaert, Roelof Jansen, Marcus Dahlem
{"title":"Ultralow Loss Design Methodology for Energy-Efficient Thermo-Optic Phase Shifters","authors":"Huaqing Qiu, Mathias Prost, David Coenen, Tangla David Kongnyuy, Manuel Reza, Guillaume Croes, Maliheh Ramezani, Puvendren Subramaniam, Herman Oprins, Hao Hu, Joost Brouckaert, Roelof Jansen, Marcus Dahlem","doi":"10.1021/acsphotonics.4c02518","DOIUrl":null,"url":null,"abstract":"Thermo-optic phase shifters are crucial components extensively utilized in large-scale photonic integrated circuits due to their simple design and well-established fabrication processes. The requirement for negligible insertion loss in low-power-consumption thermo-optic phase shifters is becoming increasingly critical, particularly in cascaded configurations employed in applications such as LiDAR, photonic computing, programmable photonics, and quantum photonics. To address this need, we present a comprehensive theory based on the fundamental coupled-mode theory for sharp-bent waveguides. We employ phase mismatch in a compact spiral waveguide to eliminate coupling loss and enhance the efficiency of thermo-optic phase shifters. Our approach successfully overcomes inherent trade-offs, demonstrating ultralow insertion loss in compact and power-efficient silicon-based phase shifters operating in the C-band. The proposed simplest-design device exhibits a record lowest measured insertion loss of 0.14 dB among all residual-heat-absorption-type phase shifters. Simultaneously, the power consumption and modulation bandwidth are measured to be 3.4 mW/π and 12.5 kHz, respectively. This methodology holds substantial promise for minimizing the insertion loss across various residual-heat-absorption-type thermo-optic phase shifters, which employ different materials and operate in diverse bands, such as the telecom and visible spectra. The experimental realization of the C-band silicon phase shifter on IMEC’s Si/SiN platform expresses its potential as a fundamental component for scalable mass production in extensive photonic circuit architectures.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02518","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermo-optic phase shifters are crucial components extensively utilized in large-scale photonic integrated circuits due to their simple design and well-established fabrication processes. The requirement for negligible insertion loss in low-power-consumption thermo-optic phase shifters is becoming increasingly critical, particularly in cascaded configurations employed in applications such as LiDAR, photonic computing, programmable photonics, and quantum photonics. To address this need, we present a comprehensive theory based on the fundamental coupled-mode theory for sharp-bent waveguides. We employ phase mismatch in a compact spiral waveguide to eliminate coupling loss and enhance the efficiency of thermo-optic phase shifters. Our approach successfully overcomes inherent trade-offs, demonstrating ultralow insertion loss in compact and power-efficient silicon-based phase shifters operating in the C-band. The proposed simplest-design device exhibits a record lowest measured insertion loss of 0.14 dB among all residual-heat-absorption-type phase shifters. Simultaneously, the power consumption and modulation bandwidth are measured to be 3.4 mW/π and 12.5 kHz, respectively. This methodology holds substantial promise for minimizing the insertion loss across various residual-heat-absorption-type thermo-optic phase shifters, which employ different materials and operate in diverse bands, such as the telecom and visible spectra. The experimental realization of the C-band silicon phase shifter on IMEC’s Si/SiN platform expresses its potential as a fundamental component for scalable mass production in extensive photonic circuit architectures.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.