Molecular Engineering of Hole-Selective Layer of TexSe1–x for High-Performance Short-Wave Infrared Photodetectors

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2025-01-31 DOI:10.1021/acsphotonics.4c0196710.1021/acsphotonics.4c01967
Mingxin Hu, Yanjun Duan, Shengren Li, Lin Yang, Wenxin Dong, Wei Dang*, Zheng Zhang, Jiaqi Liu and Zhiqiang Li*, 
{"title":"Molecular Engineering of Hole-Selective Layer of TexSe1–x for High-Performance Short-Wave Infrared Photodetectors","authors":"Mingxin Hu,&nbsp;Yanjun Duan,&nbsp;Shengren Li,&nbsp;Lin Yang,&nbsp;Wenxin Dong,&nbsp;Wei Dang*,&nbsp;Zheng Zhang,&nbsp;Jiaqi Liu and Zhiqiang Li*,&nbsp;","doi":"10.1021/acsphotonics.4c0196710.1021/acsphotonics.4c01967","DOIUrl":null,"url":null,"abstract":"<p >Short-wavelength infrared (SWIR) photodetectors are essential to human activities in military and civilian fields, including night vision, remote sensing, telecommunication, medical applications, safety monitoring, and mineral identification. Recently, the tellurium–selenium (Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>) alloy has demonstrated considerable potential in infrared photodetection. However, the photodetectors still suffer from poor device performance. Herein, we present an interfacial engineering strategy to enhance carrier transport in the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector by utilizing a self-assembled monolayer (SAM) of [2-(3,6-dimethoxy-9<i>H</i>-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) as an interface layer between the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> active layer and the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) hole transport layer. Density functional theory calculations and in-depth XPS analysis illustrate the occurrence of charge transfer and the formation of P–Se bonds at the Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>/SAM interface. This interfacial engineering approach leads to a more homogeneous surface potential, an increased built-in voltage, improved energy band alignment, and superior photoelectronic characteristics. The self-powered Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodetector exhibits an external quantum efficiency (EQE) of 46% ± 1% at 980 nm and 19.7% ± 0.5% at 1320 nm. This makes the first demonstration of Te<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub> photodiode achieving a high responsivity of 0.49 A W<sup>–1</sup>, along with a record total noise determined realistic detectivity <i></i><math><mo>(</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>*</mo></mrow></msubsup><mo>)</mo></math> of 7.69 × 10<sup>10</sup> Jones (and 5.75 × 10<sup>11</sup> Jones when considering only shot noise) at 1319 nm, combined with an ultrafast response time of &lt;547 ns (as measured under femtosecond pulsed laser illumination). Moreover, the photocurrent of this photodetector remains almost unchanged even after 30 days of storage.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 2","pages":"932–943 932–943"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c01967","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Short-wavelength infrared (SWIR) photodetectors are essential to human activities in military and civilian fields, including night vision, remote sensing, telecommunication, medical applications, safety monitoring, and mineral identification. Recently, the tellurium–selenium (TexSe1–x) alloy has demonstrated considerable potential in infrared photodetection. However, the photodetectors still suffer from poor device performance. Herein, we present an interfacial engineering strategy to enhance carrier transport in the TexSe1–x photodetector by utilizing a self-assembled monolayer (SAM) of [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) as an interface layer between the TexSe1–x active layer and the poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) hole transport layer. Density functional theory calculations and in-depth XPS analysis illustrate the occurrence of charge transfer and the formation of P–Se bonds at the TexSe1–x/SAM interface. This interfacial engineering approach leads to a more homogeneous surface potential, an increased built-in voltage, improved energy band alignment, and superior photoelectronic characteristics. The self-powered TexSe1–x photodetector exhibits an external quantum efficiency (EQE) of 46% ± 1% at 980 nm and 19.7% ± 0.5% at 1320 nm. This makes the first demonstration of TexSe1–x photodiode achieving a high responsivity of 0.49 A W–1, along with a record total noise determined realistic detectivity (D2*) of 7.69 × 1010 Jones (and 5.75 × 1011 Jones when considering only shot noise) at 1319 nm, combined with an ultrafast response time of <547 ns (as measured under femtosecond pulsed laser illumination). Moreover, the photocurrent of this photodetector remains almost unchanged even after 30 days of storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Real-time Hyperspectral Imager with High Spatial-Spectral Resolution Enabled by Massively Parallel Neural Network Ultralow Loss Design Methodology for Energy-Efficient Thermo-Optic Phase Shifters Photonic NP-Complete Problem Solver Enabled by Local Spatial Frequency Encoding Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1