{"title":"Prescribed-time stability of stochastic nonlinear delay systems","authors":"Liheng Xie , Shutang Liu , Xingao Zhu","doi":"10.1016/j.chaos.2025.116116","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the prescribed-time stability and stabilization problem for stochastic nonlinear delay systems. We introduce a new definition of prescribed-time mean-square stability which includes stability in probability and prescribed-time convergence to zero. Utilizing the prescribed-time adjustment function and some stochastic analysis techniques, we establish Lyapunov theorems of prescribed-time mean-square stability for stochastic nonlinear delay systems. An appealing feature of the new theorems is that the solution of prescribed-time stable stochastic nonlinear delay systems can converge to zero at any preset time irrespective of initial data and design parameters. Moreover, under the local Lipschitz condition and the Khasminskii-type condition, we prove that the controlled stochastic nonlinear delay system has a unique solution and achieves prescribed-time mean-square stability. Two simulation examples demonstrate the effectiveness of the theoretical analysis.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"193 ","pages":"Article 116116"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001298","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the prescribed-time stability and stabilization problem for stochastic nonlinear delay systems. We introduce a new definition of prescribed-time mean-square stability which includes stability in probability and prescribed-time convergence to zero. Utilizing the prescribed-time adjustment function and some stochastic analysis techniques, we establish Lyapunov theorems of prescribed-time mean-square stability for stochastic nonlinear delay systems. An appealing feature of the new theorems is that the solution of prescribed-time stable stochastic nonlinear delay systems can converge to zero at any preset time irrespective of initial data and design parameters. Moreover, under the local Lipschitz condition and the Khasminskii-type condition, we prove that the controlled stochastic nonlinear delay system has a unique solution and achieves prescribed-time mean-square stability. Two simulation examples demonstrate the effectiveness of the theoretical analysis.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.