Insight into oscillation of wall temperature and horizontal Lorentz force in rotating water conveying solid aluminum oxide tiny particles nanolayer via simulation of finite element computation

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-02-20 DOI:10.1016/j.chaos.2025.116141
Zhaoyang Zuo , Sonia Majeed , Bagh Ali , Nehad Ali Shah , Zia Ullah , Saleem Riaz
{"title":"Insight into oscillation of wall temperature and horizontal Lorentz force in rotating water conveying solid aluminum oxide tiny particles nanolayer via simulation of finite element computation","authors":"Zhaoyang Zuo ,&nbsp;Sonia Majeed ,&nbsp;Bagh Ali ,&nbsp;Nehad Ali Shah ,&nbsp;Zia Ullah ,&nbsp;Saleem Riaz","doi":"10.1016/j.chaos.2025.116141","DOIUrl":null,"url":null,"abstract":"<div><div>This present exploration aims to investigate the significance of the roles played by nanoparticles, nanolayer thickness, sinusoidal surface temperature, magnetohydrodynamic, and mixed convection fluid flow across extending surface. Our objective is to explore nanolayer mechanism, sinusoidal surface temperature, and nanoparticles volume concentration effects the dynamics of fluid. The leading equations of energy and momentum are converted into dimensionless form by using appropriate transformation. By using Finite element method (FEM) in MATLAB, the solution of final non-linear equations is obtained. Heat transfer and share stress augments with higher values of nanoparticle concentration <span><math><mi>χ</mi></math></span>. Heat transfer rate and share stress has significant reducing behavior against greater values of rotating parameter. The amplifies in the magnetic strength causes declination in share stress coefficient <span><math><mrow><mi>C</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>R</mi><msubsup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup></mrow></math></span> while share stress coefficient <span><math><mrow><mi>C</mi><msub><mrow><mi>f</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>R</mi><msubsup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></msubsup></mrow></math></span> has opposite behavior. When amplitude of surface temperature oscillation increase, the shear stress and heat transfer rate across the surface increases. To ensure the validity of present outcomes, a comprehensive comparison with existing outcomes is conducted and found an excellent relationship between them.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116141"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925001547","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This present exploration aims to investigate the significance of the roles played by nanoparticles, nanolayer thickness, sinusoidal surface temperature, magnetohydrodynamic, and mixed convection fluid flow across extending surface. Our objective is to explore nanolayer mechanism, sinusoidal surface temperature, and nanoparticles volume concentration effects the dynamics of fluid. The leading equations of energy and momentum are converted into dimensionless form by using appropriate transformation. By using Finite element method (FEM) in MATLAB, the solution of final non-linear equations is obtained. Heat transfer and share stress augments with higher values of nanoparticle concentration χ. Heat transfer rate and share stress has significant reducing behavior against greater values of rotating parameter. The amplifies in the magnetic strength causes declination in share stress coefficient CfxRex0.5 while share stress coefficient CfxRex0.5 has opposite behavior. When amplitude of surface temperature oscillation increase, the shear stress and heat transfer rate across the surface increases. To ensure the validity of present outcomes, a comprehensive comparison with existing outcomes is conducted and found an excellent relationship between them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Fractal power law and polymer-like behavior for the metro growth in megacities Noise-induced extreme events in Hodgkin–Huxley neural networks Exploring pedestrian permeability in urban sidewalk networks Fixed-time neural consensus control for nonlinear multiagent systems with state and input quantization Insight into oscillation of wall temperature and horizontal Lorentz force in rotating water conveying solid aluminum oxide tiny particles nanolayer via simulation of finite element computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1