{"title":"BPIFA1 inhibits periodontitis by regulating the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization","authors":"Hongyan Xu , Tao Wang , Ying Yang","doi":"10.1016/j.archoralbio.2025.106190","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Periodontitis is a chronic inflammatory disease characterized by tissue destruction and oxidative stress, primarily driven by the imbalance of immune responses. Bactericidal/permeability-increasing fold-containing family A member 1 (BPIFA1) has emerged as a key modulator of inflammation and immune homeostasis.</div></div><div><h3>Objectives</h3><div>This study investigates the role of BPIFA1 in periodontitis by focusing on its regulatory effects on the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization.</div></div><div><h3>Methods</h3><div>Saliva and periodontal tissue samples were collected from 20 periodontitis patients and 20 healthy volunteers. BPIFA1 expression was analyzed using qRT-PCR and Western blot. In vivo studies were conducted in wild-type and BPIFA1-knockout (KO) mice, where periodontitis was induced via ligature placement and LPS injections. Oxidative stress markers (ROS, MDA, SOD), inflammatory cytokines (TNF-α, IL-6), and macrophage polarization markers (iNOS, CD86, Arg-1, CD206) were quantified. NF-κB pathway activation was assessed through Western blot analysis.</div></div><div><h3>Results</h3><div>BPIFA1 expression was significantly reduced in periodontitis patients and BPIFA1-KO mice. Loss of BPIFA1 resulted in increased oxidative stress, heightened NF-κB activation, and an imbalance in macrophage polarization, with increased M1 (pro-inflammatory) and decreased M2 (anti-inflammatory) macrophages. Additionally, BPIFA1 deficiency promoted Th17 differentiation and suppressed Treg cells, exacerbating periodontal inflammation.</div></div><div><h3>Conclusion</h3><div>BPIFA1 plays a critical role in inhibiting periodontitis progression by regulating the NF-κB/IκB signaling pathway and restoring macrophage M1/M2 balance. These findings highlight BPIFA1 as a potential therapeutic target for periodontitis management.</div></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":"173 ","pages":"Article 106190"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996925000184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Periodontitis is a chronic inflammatory disease characterized by tissue destruction and oxidative stress, primarily driven by the imbalance of immune responses. Bactericidal/permeability-increasing fold-containing family A member 1 (BPIFA1) has emerged as a key modulator of inflammation and immune homeostasis.
Objectives
This study investigates the role of BPIFA1 in periodontitis by focusing on its regulatory effects on the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization.
Methods
Saliva and periodontal tissue samples were collected from 20 periodontitis patients and 20 healthy volunteers. BPIFA1 expression was analyzed using qRT-PCR and Western blot. In vivo studies were conducted in wild-type and BPIFA1-knockout (KO) mice, where periodontitis was induced via ligature placement and LPS injections. Oxidative stress markers (ROS, MDA, SOD), inflammatory cytokines (TNF-α, IL-6), and macrophage polarization markers (iNOS, CD86, Arg-1, CD206) were quantified. NF-κB pathway activation was assessed through Western blot analysis.
Results
BPIFA1 expression was significantly reduced in periodontitis patients and BPIFA1-KO mice. Loss of BPIFA1 resulted in increased oxidative stress, heightened NF-κB activation, and an imbalance in macrophage polarization, with increased M1 (pro-inflammatory) and decreased M2 (anti-inflammatory) macrophages. Additionally, BPIFA1 deficiency promoted Th17 differentiation and suppressed Treg cells, exacerbating periodontal inflammation.
Conclusion
BPIFA1 plays a critical role in inhibiting periodontitis progression by regulating the NF-κB/IκB signaling pathway and restoring macrophage M1/M2 balance. These findings highlight BPIFA1 as a potential therapeutic target for periodontitis management.
期刊介绍:
Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including:
Cell and molecular biology
Molecular genetics
Immunology
Pathogenesis
Cellular microbiology
Embryology
Syndromology
Forensic dentistry