{"title":"Genetic Admixture and Novel Host Shifts in a Parasitic Plant, Orobanche boninsimae (Orobanchaceae), Endemic to the Ogasawara Islands.","authors":"Akihiro Nishimura, Koji Takayama","doi":"10.1111/mec.17687","DOIUrl":null,"url":null,"abstract":"<p><p>Parasitic plants depend on other plants for nutrients and water and have undergone evolutionary processes tightly linked to their host range. As parasitic adaptations specialise host range, host shifts between parasite lineages are considered essential events that can lead to genetic differentiation and speciation. A thorough examination of population genealogy covering the entire host range is imperative to comprehend the impact of host-shift evolution on parasitic plant species diversity. Therefore, we investigated the population genetic structure of Orobanche boninsimae (Orobanchaceae), an endemic parasitic plant in the Bonin (Ogasawara) Islands. The host species of O. boninsimae are entirely distinct from those of other Orobanche species and show differences between geographically isolated islands, even though the host species coexist in some localities. Genetic differentiation was observed among populations from different islands, corresponding to variations in the host range of O. boninsimae. Demographic analysis supported a scenario in which populations on the southern island emerged through the admixture of populations parasitic on the different host species from the northern islands. This suggests a progressive colonisation process, wherein continental ancestors established in the northern islands underwent a host shift, followed by the migration of a lineage to the southern island. Notably, host shift across islands may have occurred through the admixture of populations. These findings provide a foundation for elucidating the roles of host plants and geographical isolation in the speciation of parasitic plants and enhance our understanding of the mechanisms driving parasitic plant diversification.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17687"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17687","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parasitic plants depend on other plants for nutrients and water and have undergone evolutionary processes tightly linked to their host range. As parasitic adaptations specialise host range, host shifts between parasite lineages are considered essential events that can lead to genetic differentiation and speciation. A thorough examination of population genealogy covering the entire host range is imperative to comprehend the impact of host-shift evolution on parasitic plant species diversity. Therefore, we investigated the population genetic structure of Orobanche boninsimae (Orobanchaceae), an endemic parasitic plant in the Bonin (Ogasawara) Islands. The host species of O. boninsimae are entirely distinct from those of other Orobanche species and show differences between geographically isolated islands, even though the host species coexist in some localities. Genetic differentiation was observed among populations from different islands, corresponding to variations in the host range of O. boninsimae. Demographic analysis supported a scenario in which populations on the southern island emerged through the admixture of populations parasitic on the different host species from the northern islands. This suggests a progressive colonisation process, wherein continental ancestors established in the northern islands underwent a host shift, followed by the migration of a lineage to the southern island. Notably, host shift across islands may have occurred through the admixture of populations. These findings provide a foundation for elucidating the roles of host plants and geographical isolation in the speciation of parasitic plants and enhance our understanding of the mechanisms driving parasitic plant diversification.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms