Impact of a lambda-cyhalothrin formulation residues on larval Apis mellifera: Examining midgut and fat body morphological response to insecticide chronic exposure.

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental Toxicology and Chemistry Pub Date : 2025-02-17 DOI:10.1093/etojnl/vgaf049
Pedro Henrique Ambrosio Nere, Rebecca Rey-Chai Kern, Lenise Silva Carneiro, Bárbara Soares Amoroso Lima, Diego Dos Santos Souza, José Eduardo Serrão
{"title":"Impact of a lambda-cyhalothrin formulation residues on larval Apis mellifera: Examining midgut and fat body morphological response to insecticide chronic exposure.","authors":"Pedro Henrique Ambrosio Nere, Rebecca Rey-Chai Kern, Lenise Silva Carneiro, Bárbara Soares Amoroso Lima, Diego Dos Santos Souza, José Eduardo Serrão","doi":"10.1093/etojnl/vgaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Pollination by honey bees (Apis mellifera) is crucial for maintaining biodiversity and crop yields. However, the widespread use of pesticides may threaten bees' survival by contaminating their resources. Lambda-cyhalothrin, a neurotoxic insecticide commonly used in agricultural pest control, poses particular risks. In insects, the midgut and fat body serve as primary barriers against xenobiotics, and exposure to these chemicals during larval development can impact adult bees. This study aimed to assess whether the residual concentration of lambda-cyhalothrin in pollen grains affects the midgut and fat body of larval A. mellifera workers after chronic exposure. The midgut epithelium of larvae exposed to a lambda-cyhalothrin-based insecticide exhibited autophagic vacuoles, apical cell protrusions, apocrine secretion, nuclear pyknosis, and high levels of polysaccharides and glycoconjugates in the cytoplasm, with smaller amounts in the brush border. Histochemical analysis revealed areas of vacuolation and damage to cell integrity in the midgut. In fat body cells, the insecticide increased polysaccharide storage and decreased lipid droplet diameter. Despite the histopathological damages, no effects were found in the larval development and adult emergence. These findings suggest the occurrence of apoptosis and autophagy in midgut cells and alterations in nutrient storage in the fat body of A. mellifera larvae exposed to the lambda-cyhalothrin-based insecticide, potentially impacting the physiology and development of this pollinator with possible effects on adult workers.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgaf049","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pollination by honey bees (Apis mellifera) is crucial for maintaining biodiversity and crop yields. However, the widespread use of pesticides may threaten bees' survival by contaminating their resources. Lambda-cyhalothrin, a neurotoxic insecticide commonly used in agricultural pest control, poses particular risks. In insects, the midgut and fat body serve as primary barriers against xenobiotics, and exposure to these chemicals during larval development can impact adult bees. This study aimed to assess whether the residual concentration of lambda-cyhalothrin in pollen grains affects the midgut and fat body of larval A. mellifera workers after chronic exposure. The midgut epithelium of larvae exposed to a lambda-cyhalothrin-based insecticide exhibited autophagic vacuoles, apical cell protrusions, apocrine secretion, nuclear pyknosis, and high levels of polysaccharides and glycoconjugates in the cytoplasm, with smaller amounts in the brush border. Histochemical analysis revealed areas of vacuolation and damage to cell integrity in the midgut. In fat body cells, the insecticide increased polysaccharide storage and decreased lipid droplet diameter. Despite the histopathological damages, no effects were found in the larval development and adult emergence. These findings suggest the occurrence of apoptosis and autophagy in midgut cells and alterations in nutrient storage in the fat body of A. mellifera larvae exposed to the lambda-cyhalothrin-based insecticide, potentially impacting the physiology and development of this pollinator with possible effects on adult workers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
期刊最新文献
Correction to: The determination of wide-range pharmaceuticals class in Erzurum biological wastewater treatment plant using liquid chromatography coupled to tandem mass spectrometry: occurrence, treatment efficiency, and environmental risk assessment. Physiological and molecular responses of the chorioallantoic membranes to diluted bitumen exposures in multiple bird species. Application of transcriptomics concentration-response modeling for prioritization of contaminants detected in tributaries of the North American Great Lakes. Impact of a lambda-cyhalothrin formulation residues on larval Apis mellifera: Examining midgut and fat body morphological response to insecticide chronic exposure. Significant metal accumulation in fish in a metal-contaminated river without detectable effects on fish and macroinvertebrate communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1