Zuzana Kalaninova, Josef Dvorak, Jiri Dresler, Michael Volny, Petr Novak, Petr Pompach
{"title":"Novel activity assay for botulotoxin A1 detection using functionalized chips and matrix-assisted laser desorption/ionization mass spectrometry.","authors":"Zuzana Kalaninova, Josef Dvorak, Jiri Dresler, Michael Volny, Petr Novak, Petr Pompach","doi":"10.1080/14789450.2025.2482933","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Botulinum neurotoxins (BoNTs) are a group of neurotoxins produced by Clostridium bacteria. Their effect on neuro-muscular connections through cleaving proteins of the SNARE complex results in blocking acetylcholine signal transduction. The FDA-approved mouse bioassay, which involves exposing live mice to potentially contaminated food, is the most widely used method. However, this assay is costly, time-consuming, and raises ethical concerns. Therefore, there is a need for alternative assays that can enzymatically measure the activity of BoNTs.</p><p><strong>Research design and methods: </strong>We present an approach that combines the EndoPep-MS assay with protein affinity chips fabricated using ion soft-landing technology. Toxic activity is indirectly assessed by monitoring the <i>N</i>- and C-terminal fragments of the substrate peptide. This new method employs a protein array with affinity molecules targeting either the BoNT/A1 or the substrate peptide. Both variants enable in-situ reaction and detection of substrate peptides via MALDI-ToF MS on the protein chip.</p><p><strong>Results: </strong>This method demonstrated successful detection of active BoNT/A1 in both buffer and complex matrices, achieving a detection limit of 0.5 ng/mL.</p><p><strong>Conclusions: </strong>This study reports the in-situ detection of botulotoxin A1 using functionalized MALDI chips. The advantages of the MALDI chip technology include speed, robustness, cost-effectiveness, and possible automatization.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2482933","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Botulinum neurotoxins (BoNTs) are a group of neurotoxins produced by Clostridium bacteria. Their effect on neuro-muscular connections through cleaving proteins of the SNARE complex results in blocking acetylcholine signal transduction. The FDA-approved mouse bioassay, which involves exposing live mice to potentially contaminated food, is the most widely used method. However, this assay is costly, time-consuming, and raises ethical concerns. Therefore, there is a need for alternative assays that can enzymatically measure the activity of BoNTs.
Research design and methods: We present an approach that combines the EndoPep-MS assay with protein affinity chips fabricated using ion soft-landing technology. Toxic activity is indirectly assessed by monitoring the N- and C-terminal fragments of the substrate peptide. This new method employs a protein array with affinity molecules targeting either the BoNT/A1 or the substrate peptide. Both variants enable in-situ reaction and detection of substrate peptides via MALDI-ToF MS on the protein chip.
Results: This method demonstrated successful detection of active BoNT/A1 in both buffer and complex matrices, achieving a detection limit of 0.5 ng/mL.
Conclusions: This study reports the in-situ detection of botulotoxin A1 using functionalized MALDI chips. The advantages of the MALDI chip technology include speed, robustness, cost-effectiveness, and possible automatization.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.