{"title":"SHORT INTERNODE1 regulates the activity of MADS transcription factors during rice floral organ development","authors":"Erchao Duan, Xuan Teng, Huan Xu, Wenyu Ma, Desheng Zhang, Rushuang Zhang, Chuanwei Gu, Yipeng Zhang, Rongbo Chen, Xiaoli Chen, Miao Feng, Qibing Lin, Hui Dong, Yuanyan Zhang, Xue Yang, Lei Zhou, Shijia Liu, Xi Liu, Yunlu Tian, Ling Jiang, Haiyang Wang, Yihua Wang, Jianmin Wan","doi":"10.1093/plphys/kiaf034","DOIUrl":null,"url":null,"abstract":"Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"5 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf034","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Floral organ identity is fundamental to species diversity and reproductive success in plants and is mainly determined by the combinatorial action of MADS homeotic factors. However, despite their conserved roles in specifying floral organ identity, the regulation of MADS transcription factors remains elusive. Here, we show that the rice (Oryza sativa L.) short internode1 (shi1) mutant displays pleiotropic defects in floral organ development, resulting in severe penalties to yield and grain quality. OsSHI1 mRNA accumulates in each floral organ whorl, and OsSHI1 interacts with multiple MADS transcription factors, especially the class E members. This physical interaction occurs through the intrinsic MADS domains, thus regulating the transcriptional activity of the MADS transcription factors. This study provides insight into the molecular and genetic regulatory mechanisms underlying the roles of OsSHI1 and MADS transcription factors in rice floral organ development and, consequently, grain yield and quality.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.