Chitinase-3 Like-Protein-1 Signature in Neurological Disorders: Emphasis on Stroke

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Neuroscience Pub Date : 2025-02-20 DOI:10.1007/s12031-025-02311-0
Khiany Mathias, Richard Simon Machado, Naíla Maciel Andrade, Natalia Piacentini, Carla Damasio Martins, Josiane Somariva Prophiro, Fabricia Petronilho
{"title":"Chitinase-3 Like-Protein-1 Signature in Neurological Disorders: Emphasis on Stroke","authors":"Khiany Mathias,&nbsp;Richard Simon Machado,&nbsp;Naíla Maciel Andrade,&nbsp;Natalia Piacentini,&nbsp;Carla Damasio Martins,&nbsp;Josiane Somariva Prophiro,&nbsp;Fabricia Petronilho","doi":"10.1007/s12031-025-02311-0","DOIUrl":null,"url":null,"abstract":"<div><p>Chitinase-3 like-protein-1 (CHI3L1) is a protein involved in various pathological conditions, including infectious, allergic, metabolic, cardiovascular, and neurological diseases. In the central nervous system, glial cells, especially activated astrocytes, are the primary sources of CHI3L1 synthesis and secretion. In neurodegenerative diseases, such as Alzheimer's disease, elevated levels of CHI3L1 are correlated with greater cognitive decline and neuroinflammation. Regarding stroke, CHI3L1 is a relevant biomarker associated with an increased risk of adverse events and mortality, particularly in patients with elevated levels following the onset of symptoms. Overall, the presence of CHI3L1 may reflect disease severity and aid in predicting outcomes. This narrative review explores the potential role of CHI3L1 in neurological diseases, with an emphasis on stroke, and it may contribute to guiding the development of effective inhibitors, which could be an attractive therapeutic approach for treating this condition.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12031-025-02311-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02311-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chitinase-3 like-protein-1 (CHI3L1) is a protein involved in various pathological conditions, including infectious, allergic, metabolic, cardiovascular, and neurological diseases. In the central nervous system, glial cells, especially activated astrocytes, are the primary sources of CHI3L1 synthesis and secretion. In neurodegenerative diseases, such as Alzheimer's disease, elevated levels of CHI3L1 are correlated with greater cognitive decline and neuroinflammation. Regarding stroke, CHI3L1 is a relevant biomarker associated with an increased risk of adverse events and mortality, particularly in patients with elevated levels following the onset of symptoms. Overall, the presence of CHI3L1 may reflect disease severity and aid in predicting outcomes. This narrative review explores the potential role of CHI3L1 in neurological diseases, with an emphasis on stroke, and it may contribute to guiding the development of effective inhibitors, which could be an attractive therapeutic approach for treating this condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
期刊最新文献
SOX10-Mediated Regulation of Enteric Glial Phenotype in vitro and its Relevance for Neuroinflammatory Disorders Chitinase-3 Like-Protein-1 Signature in Neurological Disorders: Emphasis on Stroke Cdh23 Gene Mutation–Induced Vestibular Dysfunction in Mice: Abnormal Stereocilia Bundle and Otolith Development and Activation of p53/FoxO Signaling Pathway Identification of Key Genes and Immune Characteristics of SASP in Acute Ischemic Stroke Urolithin A Enhances Tight Junction Protein Expression in Endothelial Cells Cultured In Vitro via Pink1-Parkin-Mediated Mitophagy in Irradiated Astrocytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1