IF 11.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESScience AdvancesPub Date : 2025-02-19
Francesco Mattei, Anna E. Hickman, Julia Uitz, Louison Dufour, Vincenzo Vellucci, Laurence Garczarek, Frédéric Partensky, Stephanie Dutkiewicz
{"title":"Chromatic acclimation shapes phytoplankton biogeography","authors":"Francesco Mattei, Anna E. Hickman, Julia Uitz, Louison Dufour, Vincenzo Vellucci, Laurence Garczarek, Frédéric Partensky, Stephanie Dutkiewicz","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Marine photoautotrophs have evolved to exploit the ocean’s variable light conditions, with chromatic acclimators being able to adjust their pigment content to better match the ambient light color. The impact of chromatic acclimation on phytoplankton distribution and competition is not well understood despite its global importance. This study explores chromatic acclimation’s role in shaping the biogeography of <i>Synechococcus</i>, a widespread cyanobacterium. We integrated three pigment types into a global ecosystem model: a green-light specialist, a blue-light specialist, and a chromatic acclimator. Laboratory studies defined each type’s specific absorption properties. Our results indicate that chromatic acclimation offers an evolutionary advantage by enabling <i>Synechococcus</i> to adapt to varying light environments. This ability to mimic blue- and green-light specialists and enhance absorption at intermediate states, particularly in areas with high seasonal light variations, increases <i>Synechococcus</i> distribution and biomass. Thus, chromatic acclimation affects ecosystem functioning and biogeochemical processes in the ocean.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9609","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr9609","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Marine photoautotrophs have evolved to exploit the ocean’s variable light conditions, with chromatic acclimators being able to adjust their pigment content to better match the ambient light color. The impact of chromatic acclimation on phytoplankton distribution and competition is not well understood despite its global importance. This study explores chromatic acclimation’s role in shaping the biogeography of Synechococcus, a widespread cyanobacterium. We integrated three pigment types into a global ecosystem model: a green-light specialist, a blue-light specialist, and a chromatic acclimator. Laboratory studies defined each type’s specific absorption properties. Our results indicate that chromatic acclimation offers an evolutionary advantage by enabling Synechococcus to adapt to varying light environments. This ability to mimic blue- and green-light specialists and enhance absorption at intermediate states, particularly in areas with high seasonal light variations, increases Synechococcus distribution and biomass. Thus, chromatic acclimation affects ecosystem functioning and biogeochemical processes in the ocean.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.