Jiahang Qin, Ruoxi Wang, Wei Liang, Zhentao Man, Wei Li, Yang An, Haifeng Chen
{"title":"Adipose-Derived Stem Cell Specific Affinity Peptide-Modified Adipose Decellularized Scaffolds for Promoting Adipogenesis.","authors":"Jiahang Qin, Ruoxi Wang, Wei Liang, Zhentao Man, Wei Li, Yang An, Haifeng Chen","doi":"10.1021/acsbiomaterials.4c02161","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose-derived stem cells (ADSCs) are known to promote angiogenesis and adipogenesis. However, their limited ability to efficiently target and integrate into specific tissues poses a major challenge for ADSC-based therapies. In this study, we identified a seven-amino acid peptide sequence (P7) with high specificity for ADSCs using phage display technology. P7 was then covalently conjugated to decellularized adipose-derived matrix (DAM), creating an \"ADSC homing device\" designed to recruit ADSCs both in vitro and in vivo. The P7-conjugated DAM significantly enhanced ADSC adhesion and proliferation in vitro. After being implanted into rat subcutaneous tissue, immunofluorescence staining after 14 days revealed that P7-conjugated DAM recruited a greater number of ADSCs, promoting angiogenesis and adipogenesis in the surrounding tissue. Moreover, CD206 immunostaining at 14 days indicated that P7-conjugated DAM facilitated the polarization of macrophages to the M2 phenotype at the implantation site. These findings demonstrate that the P7 peptide has a high affinity for ADSCs, and its conjugation with DAM significantly improves ADSC recruitment in vivo. This approach holds great potential for a wide range of applications in material surface modification.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02161","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Adipose-derived stem cells (ADSCs) are known to promote angiogenesis and adipogenesis. However, their limited ability to efficiently target and integrate into specific tissues poses a major challenge for ADSC-based therapies. In this study, we identified a seven-amino acid peptide sequence (P7) with high specificity for ADSCs using phage display technology. P7 was then covalently conjugated to decellularized adipose-derived matrix (DAM), creating an "ADSC homing device" designed to recruit ADSCs both in vitro and in vivo. The P7-conjugated DAM significantly enhanced ADSC adhesion and proliferation in vitro. After being implanted into rat subcutaneous tissue, immunofluorescence staining after 14 days revealed that P7-conjugated DAM recruited a greater number of ADSCs, promoting angiogenesis and adipogenesis in the surrounding tissue. Moreover, CD206 immunostaining at 14 days indicated that P7-conjugated DAM facilitated the polarization of macrophages to the M2 phenotype at the implantation site. These findings demonstrate that the P7 peptide has a high affinity for ADSCs, and its conjugation with DAM significantly improves ADSC recruitment in vivo. This approach holds great potential for a wide range of applications in material surface modification.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture