Biohybrid Nanosystem Fabricated with Marine Diatom Thalassiosira pseudonana for Uric Acid Detection.

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-03-10 Epub Date: 2025-02-18 DOI:10.1021/acsbiomaterials.4c02312
Xuewei Yang, Siru Long, Boyu Wang, Jiahui Chen, Ying Xiong, Ming Ying
{"title":"Biohybrid Nanosystem Fabricated with Marine Diatom <i>Thalassiosira pseudonana</i> for Uric Acid Detection.","authors":"Xuewei Yang, Siru Long, Boyu Wang, Jiahui Chen, Ying Xiong, Ming Ying","doi":"10.1021/acsbiomaterials.4c02312","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the intense demand for low-cost, environmentally friendly, and stable uric acid (UA) detection methods, a novel biosensing nanosystem made with marine diatom was studied. Reduced by live diatom (<i>Thalassiosira pseudonana</i>), metallic nanoparticles (Cu<sub><i>X</i></sub>) were hybridized with the heteronanostructure (Diatom frustule, DF), showing peroxidase activity 2.66-fold over horseradish peroxidase (HRP). To immobilize the enzyme directionally with increasing loading amounts, silaffin peptides (R<sub>5</sub> and T<sub>8</sub>) were designed for tagging the urate oxidase (UoX). The enzyme loading on DF of tagged UoX was 1.76-fold (R<sub>5</sub>) and 1.54-fold (T<sub>8</sub>) that of untagged UoX. The activity of immobilized UoX-R<sub>5</sub> was 5.29-11.76-fold more than that of free UoX-R<sub>5</sub> at various pH levels (5-10) and temperatures (20-60 °C). The nanosystem (UoX-R<sub>5</sub> immobilized on Cu<sub><i>X</i></sub>-coated diatom frustules, termed as BioHNS) demonstrated a superior linear range of 5 × 10<sup>-6</sup> to 1 × 10<sup>-3</sup> M and a detection limit of 1.6 μM, surpassing the performance of the majority of reported UA sensors. The recoveries of UA in urine were detected by the BioHNS, ranging from 96.93 to 105.35%, with a relative deviation of less than 5.00%. The BioHNS showed excellent anti-interference and storage stability (2 months). In summary, BioHNS demonstrates significant potential as a sustainable and environmentally friendly biosensor for uric acid detection, highlighting its substantial relevance to the biomedical applications of marine diatoms.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"1792-1805"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02312","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the intense demand for low-cost, environmentally friendly, and stable uric acid (UA) detection methods, a novel biosensing nanosystem made with marine diatom was studied. Reduced by live diatom (Thalassiosira pseudonana), metallic nanoparticles (CuX) were hybridized with the heteronanostructure (Diatom frustule, DF), showing peroxidase activity 2.66-fold over horseradish peroxidase (HRP). To immobilize the enzyme directionally with increasing loading amounts, silaffin peptides (R5 and T8) were designed for tagging the urate oxidase (UoX). The enzyme loading on DF of tagged UoX was 1.76-fold (R5) and 1.54-fold (T8) that of untagged UoX. The activity of immobilized UoX-R5 was 5.29-11.76-fold more than that of free UoX-R5 at various pH levels (5-10) and temperatures (20-60 °C). The nanosystem (UoX-R5 immobilized on CuX-coated diatom frustules, termed as BioHNS) demonstrated a superior linear range of 5 × 10-6 to 1 × 10-3 M and a detection limit of 1.6 μM, surpassing the performance of the majority of reported UA sensors. The recoveries of UA in urine were detected by the BioHNS, ranging from 96.93 to 105.35%, with a relative deviation of less than 5.00%. The BioHNS showed excellent anti-interference and storage stability (2 months). In summary, BioHNS demonstrates significant potential as a sustainable and environmentally friendly biosensor for uric acid detection, highlighting its substantial relevance to the biomedical applications of marine diatoms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋硅藻假海藻制备用于尿酸检测的生物杂化纳米系统。
鉴于对低成本、环保、稳定的尿酸检测方法的强烈需求,研究了一种新型的海洋硅藻生物传感纳米系统。在活硅藻(Thalassiosira pseudonana)还原后,金属纳米颗粒(CuX)与异烷结构(diatom frustule, DF)杂交,显示出比辣根过氧化物酶(HRP)高2.66倍的过氧化物酶活性。为了定向固定酶,设计了硅蛋白肽(R5和T8)来标记尿酸氧化酶(UoX)。标记的UoX在DF上的酶载量是未标记UoX的1.76倍(R5)和1.54倍(T8)。在不同pH值(5 ~ 10)和温度(20 ~ 60℃)下,固定化UoX-R5的活性是游离UoX-R5的5.29 ~ 11.76倍。该纳米系统(UoX-R5固定在cux涂层硅藻上,称为BioHNS)具有5 × 10-6至1 × 10-3 M的优越线性范围和1.6 μM的检测限,超过了大多数报道的UA传感器的性能。BioHNS检测尿液中UA的回收率为96.93 ~ 105.35%,相对偏差小于5.00%。BioHNS具有良好的抗干扰性和储存稳定性(2个月)。总之,BioHNS作为一种可持续和环境友好的尿酸检测生物传感器显示出巨大的潜力,突出了其与海洋硅藻生物医学应用的重大相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
CoCrMo Particles Drive Macrophage Ferroptosis via Inhibiting the Sirtuin 1/NRF2/GPX4 Pathway to Promote Periprosthetic Inflammatory Osteolysis. Thermosensitive Hydrogel Derived from a Human Amniotic Membrane Promotes Diabetic Wound Healing. Residuals of Chemical Cleaning Agents Impair Peri-Implant Cell Viability: An in Vitro Study. Injectable Cisplatin-Loaded Biodegradable Poly(anhydride-ester) for Treating Head and Neck Cancer: Preclinical Studies. Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1