Incorporation of Adeno-Associated Virus Encoding Vascular Endothelial Growth Factor into a Biodegradable Elastomeric Scaffold for Improved Function in the Ischemic Rat Heart.
Yasumoto Matsumura, Taro Fujii, Xinzhu Gu, Hong Bin Jiang, Noriyuki Kashiyama, Yasunari Hayashi, Marianna Barbuto, Ying Tang, Bing Wang, Masato Mutsuga, Akihiko Usui, William R Wagner
{"title":"Incorporation of Adeno-Associated Virus Encoding Vascular Endothelial Growth Factor into a Biodegradable Elastomeric Scaffold for Improved Function in the Ischemic Rat Heart.","authors":"Yasumoto Matsumura, Taro Fujii, Xinzhu Gu, Hong Bin Jiang, Noriyuki Kashiyama, Yasunari Hayashi, Marianna Barbuto, Ying Tang, Bing Wang, Masato Mutsuga, Akihiko Usui, William R Wagner","doi":"10.1021/acsbiomaterials.4c01457","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic heart disease morbidity and mortality ensue as the ventricle remodels, and cardiac function is lost following myocardial infarction. Previous studies have shown that applying a biodegradable, elastic epicardial patch onto the ischemic cardiac wall preserves the cardiac function and alters the remodeling process. In this report, the capacity to deliver a recombinant adeno-associated virus (AAV) encoding human vascular endothelial growth factor (VEGF) was evaluated to determine if it would provide benefit beyond a patch alone. Coaxial electrospinning of a poly(ether ester urethane) urea generated microfibrous patches with fibers loaded in their core with VEGF-AAV in poly(ethylene oxide) or vehicle alone. In a rat infarction model, epicardial patches were placed 3 days post-infarction. Over an 8 week period following the intervention, end-diastolic area was lower and ejection fraction greater in the patch-VEGF group compared with the control patch and sham surgery groups. There was also a greater number of α-SMA-positive cells, blood vessels, and positive immunostaining for VEGF in the patch-VEGF group compared with groups having patches lacking VEGF. The approach of combining mechanical (patch) and biofunctional (controlled release angiogenic therapy) support through a scaffold-based gene vector transfer approach may be an effective option for dealing with the adverse ventricular wall remodeling that leads to end-stage cardiomyopathy.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01457","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic heart disease morbidity and mortality ensue as the ventricle remodels, and cardiac function is lost following myocardial infarction. Previous studies have shown that applying a biodegradable, elastic epicardial patch onto the ischemic cardiac wall preserves the cardiac function and alters the remodeling process. In this report, the capacity to deliver a recombinant adeno-associated virus (AAV) encoding human vascular endothelial growth factor (VEGF) was evaluated to determine if it would provide benefit beyond a patch alone. Coaxial electrospinning of a poly(ether ester urethane) urea generated microfibrous patches with fibers loaded in their core with VEGF-AAV in poly(ethylene oxide) or vehicle alone. In a rat infarction model, epicardial patches were placed 3 days post-infarction. Over an 8 week period following the intervention, end-diastolic area was lower and ejection fraction greater in the patch-VEGF group compared with the control patch and sham surgery groups. There was also a greater number of α-SMA-positive cells, blood vessels, and positive immunostaining for VEGF in the patch-VEGF group compared with groups having patches lacking VEGF. The approach of combining mechanical (patch) and biofunctional (controlled release angiogenic therapy) support through a scaffold-based gene vector transfer approach may be an effective option for dealing with the adverse ventricular wall remodeling that leads to end-stage cardiomyopathy.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture