Higher Microbial Biomass Accumulation on El Médano 464 Meteorite Compared with Adjacent Soils in the Atacama Desert.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2025-02-01 DOI:10.1089/ast.2024.0071
Gabriel A Pinto, María Ángeles Lezcano, Laura Sanchéz-García, Rodrigo Martínez, Víctor Parro, Daniel Carrizo
{"title":"Higher Microbial Biomass Accumulation on El Médano 464 Meteorite Compared with Adjacent Soils in the Atacama Desert.","authors":"Gabriel A Pinto, María Ángeles Lezcano, Laura Sanchéz-García, Rodrigo Martínez, Víctor Parro, Daniel Carrizo","doi":"10.1089/ast.2024.0071","DOIUrl":null,"url":null,"abstract":"<p><p>Chondritic meteorites can be appropriate substrates for the colonization of terrestrial microorganisms. However, determining whether organic compounds are intrinsic to the meteorite or come from external (terrestrial) contamination is still controversial. This research explores the molecular distribution and carbon isotopic composition of three lipid families (hydrocarbons, alkanoic acids, and alcohols) as well as DNA extracted from the interior of a CO carbonaceous chondrite named El Médano 464 (EM 464), discovered in the Atacama Desert in 2019. Three soil samples from the discovery area of EM 464 were collected and used as a background control for the composition and distribution of organic compounds. Our results revealed a higher abundance of the three lipid families in EM 464 compared with the surrounding soil samples. The organic compounds in EM 464 showed a mean δ<sup>13</sup>C value of -27.8 ± 0.5 for hydrocarbons (<i>N</i> = 20), -27.6 ± 1.1 for alkanoic acids (<i>N</i> = 17), and -27.5 ± 2.2‰ for alcohols (<i>N</i> = 18). These δ<sup>13</sup>C-depleted values are compatible with terrestrial biosignatures and are within isotopic values produced as a result of carbon fixation due to the Calvin cycle (δ<sup>13</sup>C of ca. from -19 to -34‰) widely used by photosynthetic terrestrial microorganisms. The DNA analysis (based on the bacterial 16S rRNA gene) showed a dominance of Proteobacteria (now Pseudomonadota) and Actinobacteriota in both meteorite and soils but exhibited different bacterial composition at the family level. This suggests that the microbial material inside the meteorite may have partially come from the adjacent soils, but we cannot rule out other sources, such as windborne microbes from distant locations. In addition, the meteorite showed higher bacterial diversity (H' = 2.4-2.8) compared with the three soil samples (H' = 0.3-1.8). Based on the distribution and δ<sup>13</sup>C value of organic compounds as well as DNA analysis, we suggest that most, if not all, of the organic compounds detected in the studied CO chondrite are of terrestrial origin (<i>i.e.</i>, contamination). The terrestrial contamination of EM 464 by a diverse microbial community indicates that Atacama chondrites can offer distinctive ecological conditions for microorganisms to thrive in the harsh desert environment, which can result in an accumulation of microbial biomass and preservation of molecular fossils over time.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"25 2","pages":"115-132"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0071","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chondritic meteorites can be appropriate substrates for the colonization of terrestrial microorganisms. However, determining whether organic compounds are intrinsic to the meteorite or come from external (terrestrial) contamination is still controversial. This research explores the molecular distribution and carbon isotopic composition of three lipid families (hydrocarbons, alkanoic acids, and alcohols) as well as DNA extracted from the interior of a CO carbonaceous chondrite named El Médano 464 (EM 464), discovered in the Atacama Desert in 2019. Three soil samples from the discovery area of EM 464 were collected and used as a background control for the composition and distribution of organic compounds. Our results revealed a higher abundance of the three lipid families in EM 464 compared with the surrounding soil samples. The organic compounds in EM 464 showed a mean δ13C value of -27.8 ± 0.5 for hydrocarbons (N = 20), -27.6 ± 1.1 for alkanoic acids (N = 17), and -27.5 ± 2.2‰ for alcohols (N = 18). These δ13C-depleted values are compatible with terrestrial biosignatures and are within isotopic values produced as a result of carbon fixation due to the Calvin cycle (δ13C of ca. from -19 to -34‰) widely used by photosynthetic terrestrial microorganisms. The DNA analysis (based on the bacterial 16S rRNA gene) showed a dominance of Proteobacteria (now Pseudomonadota) and Actinobacteriota in both meteorite and soils but exhibited different bacterial composition at the family level. This suggests that the microbial material inside the meteorite may have partially come from the adjacent soils, but we cannot rule out other sources, such as windborne microbes from distant locations. In addition, the meteorite showed higher bacterial diversity (H' = 2.4-2.8) compared with the three soil samples (H' = 0.3-1.8). Based on the distribution and δ13C value of organic compounds as well as DNA analysis, we suggest that most, if not all, of the organic compounds detected in the studied CO chondrite are of terrestrial origin (i.e., contamination). The terrestrial contamination of EM 464 by a diverse microbial community indicates that Atacama chondrites can offer distinctive ecological conditions for microorganisms to thrive in the harsh desert environment, which can result in an accumulation of microbial biomass and preservation of molecular fossils over time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Ammonia or Methanol Would Enable Subsurface Liquid Water at the Martian South Pole. Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection. Understanding Sulfate Stability on Mars: A Thermo-Raman Spectroscopy Study. Remote Detection of Red Edge Spectral Characteristics in Floating Aquatic Vegetation. Preservation of Extracellular Sheaths Produced by Iron-Oxidizing Bacteria: An Analog for Potential Morphological Biosignatures on Mars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1